ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.08337
32
13

WMAdapter: Adding WaterMark Control to Latent Diffusion Models

12 June 2024
Hai Ci
Yiren Song
Pei Yang
Jinheng Xie
Mike Zheng Shou
    WIGM
ArXivPDFHTML
Abstract

Watermarking is crucial for protecting the copyright of AI-generated images. We propose WMAdapter, a diffusion model watermark plugin that takes user-specified watermark information and allows for seamless watermark imprinting during the diffusion generation process. WMAdapter is efficient and robust, with a strong emphasis on high generation quality. To achieve this, we make two key designs: (1) We develop a contextual adapter structure that is lightweight and enables effective knowledge transfer from heavily pretrained post-hoc watermarking models. (2) We introduce an extra finetuning step and design a hybrid finetuning strategy to further improve image quality and eliminate tiny artifacts. Empirical results demonstrate that WMAdapter offers strong flexibility, exceptional image generation quality and competitive watermark robustness.

View on arXiv
Comments on this paper