Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2406.05491
Cited By
v1
v2
v3 (latest)
One Perturbation is Enough: On Generating Universal Adversarial Perturbations against Vision-Language Pre-training Models
8 June 2024
Hao Fang
Jiawei Kong
Wenbo Yu
Bin Chen
Jiawei Li
Hao Wu
Ke Xu
Ke Xu
AAML
VLM
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"One Perturbation is Enough: On Generating Universal Adversarial Perturbations against Vision-Language Pre-training Models"
7 / 107 papers shown
Title
Distributional Smoothing with Virtual Adversarial Training
Takeru Miyato
S. Maeda
Masanori Koyama
Ken Nakae
S. Ishii
91
458
0
02 Jul 2015
Flickr30k Entities: Collecting Region-to-Phrase Correspondences for Richer Image-to-Sentence Models
Bryan A. Plummer
Liwei Wang
Christopher M. Cervantes
Juan C. Caicedo
Julia Hockenmaier
Svetlana Lazebnik
202
2,071
0
19 May 2015
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
280
19,107
0
20 Dec 2014
Deep Visual-Semantic Alignments for Generating Image Descriptions
A. Karpathy
Li Fei-Fei
140
5,590
0
07 Dec 2014
CIDEr: Consensus-based Image Description Evaluation
Ramakrishna Vedantam
C. L. Zitnick
Devi Parikh
295
4,508
0
20 Nov 2014
Show and Tell: A Neural Image Caption Generator
Oriol Vinyals
Alexander Toshev
Samy Bengio
D. Erhan
3DV
249
6,035
0
17 Nov 2014
Microsoft COCO: Common Objects in Context
Nayeon Lee
Michael Maire
Serge J. Belongie
Lubomir Bourdev
Ross B. Girshick
James Hays
Pietro Perona
Deva Ramanan
C. L. Zitnick
Piotr Dollár
ObjD
419
43,777
0
01 May 2014
Previous
1
2
3