ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.05477
  4. Cited By
Attri-Net: A Globally and Locally Inherently Interpretable Model for
  Multi-Label Classification Using Class-Specific Counterfactuals

Attri-Net: A Globally and Locally Inherently Interpretable Model for Multi-Label Classification Using Class-Specific Counterfactuals

8 June 2024
Susu Sun
S. Woerner
Andreas Maier
Lisa M. Koch
Christian F. Baumgartner
    FAtt
ArXiv (abs)PDFHTML

Papers citing "Attri-Net: A Globally and Locally Inherently Interpretable Model for Multi-Label Classification Using Class-Specific Counterfactuals"

30 / 30 papers shown
Title
Do Explanations Explain? Model Knows Best
Do Explanations Explain? Model Knows Best
Ashkan Khakzar
Pedram J. Khorsandi
Rozhin Nobahari
Nassir Navab
XAIAAMLFAtt
36
24
0
04 Mar 2022
Consistent Explanations by Contrastive Learning
Consistent Explanations by Contrastive Learning
Vipin Pillai
Soroush Abbasi Koohpayegani
Ashley Ouligian
Dennis Fong
Hamed Pirsiavash
FAtt
56
21
0
01 Oct 2021
NetAdaptV2: Efficient Neural Architecture Search with Fast Super-Network
  Training and Architecture Optimization
NetAdaptV2: Efficient Neural Architecture Search with Fast Super-Network Training and Architecture Optimization
Tien-Ju Yang
Yi-Lun Liao
Vivienne Sze
80
26
0
31 Mar 2021
Using StyleGAN for Visual Interpretability of Deep Learning Models on
  Medical Images
Using StyleGAN for Visual Interpretability of Deep Learning Models on Medical Images
K. Schutte
O. Moindrot
P. Hérent
Jean-Baptiste Schiratti
S. Jégou
FAttMedIm
119
62
0
19 Jan 2021
Large-scale Robust Deep AUC Maximization: A New Surrogate Loss and
  Empirical Studies on Medical Image Classification
Large-scale Robust Deep AUC Maximization: A New Surrogate Loss and Empirical Studies on Medical Image Classification
Zhuoning Yuan
Yan Yan
Milan Sonka
Tianbao Yang
AI4TSMedImOOD
78
120
0
06 Dec 2020
Use HiResCAM instead of Grad-CAM for faithful explanations of
  convolutional neural networks
Use HiResCAM instead of Grad-CAM for faithful explanations of convolutional neural networks
R. Draelos
Lawrence Carin
FAtt
77
96
0
17 Nov 2020
Concept Bottleneck Models
Concept Bottleneck Models
Pang Wei Koh
Thao Nguyen
Y. S. Tang
Stephen Mussmann
Emma Pierson
Been Kim
Percy Liang
99
833
0
09 Jul 2020
Shortcut Learning in Deep Neural Networks
Shortcut Learning in Deep Neural Networks
Robert Geirhos
J. Jacobsen
Claudio Michaelis
R. Zemel
Wieland Brendel
Matthias Bethge
Felix Wichmann
214
2,059
0
16 Apr 2020
Concept Whitening for Interpretable Image Recognition
Concept Whitening for Interpretable Image Recognition
Zhi Chen
Yijie Bei
Cynthia Rudin
FAtt
85
322
0
05 Feb 2020
Distributionally Robust Neural Networks for Group Shifts: On the
  Importance of Regularization for Worst-Case Generalization
Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization
Shiori Sagawa
Pang Wei Koh
Tatsunori B. Hashimoto
Percy Liang
OOD
108
1,248
0
20 Nov 2019
Score-CAM: Score-Weighted Visual Explanations for Convolutional Neural
  Networks
Score-CAM: Score-Weighted Visual Explanations for Convolutional Neural Networks
Mehdi Neshat
Zifan Wang
Bradley Alexander
Fan Yang
Zijian Zhang
Sirui Ding
Markus Wagner
Xia Hu
FAtt
93
1,073
0
03 Oct 2019
Approximating CNNs with Bag-of-local-Features models works surprisingly
  well on ImageNet
Approximating CNNs with Bag-of-local-Features models works surprisingly well on ImageNet
Wieland Brendel
Matthias Bethge
SSLFAtt
104
561
0
20 Mar 2019
CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and
  Expert Comparison
CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison
Jeremy Irvin
Pranav Rajpurkar
M. Ko
Yifan Yu
Silviana Ciurea-Ilcus
...
D. Larson
C. Langlotz
Bhavik Patel
M. Lungren
A. Ng
114
2,601
0
21 Jan 2019
Sanity Checks for Saliency Maps
Sanity Checks for Saliency Maps
Julius Adebayo
Justin Gilmer
M. Muelly
Ian Goodfellow
Moritz Hardt
Been Kim
FAttAAMLXAI
148
1,969
0
08 Oct 2018
This Looks Like That: Deep Learning for Interpretable Image Recognition
This Looks Like That: Deep Learning for Interpretable Image Recognition
Chaofan Chen
Oscar Li
Chaofan Tao
A. Barnett
Jonathan Su
Cynthia Rudin
246
1,188
0
27 Jun 2018
Towards Robust Interpretability with Self-Explaining Neural Networks
Towards Robust Interpretability with Self-Explaining Neural Networks
David Alvarez-Melis
Tommi Jaakkola
MILMXAI
128
947
0
20 Jun 2018
Interpretability Beyond Feature Attribution: Quantitative Testing with
  Concept Activation Vectors (TCAV)
Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)
Been Kim
Martin Wattenberg
Justin Gilmer
Carrie J. Cai
James Wexler
F. Viégas
Rory Sayres
FAtt
227
1,850
0
30 Nov 2017
StarGAN: Unified Generative Adversarial Networks for Multi-Domain
  Image-to-Image Translation
StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation
Yunjey Choi
Min-Je Choi
M. Kim
Jung-Woo Ha
Sunghun Kim
Jaegul Choo
GAN
148
3,557
0
24 Nov 2017
Visual Feature Attribution using Wasserstein GANs
Visual Feature Attribution using Wasserstein GANs
Christian F. Baumgartner
Lisa M. Koch
K. Tezcan
Jia Xi Ang
E. Konukoglu
GANMedIm
84
144
0
24 Nov 2017
Deep Multi-instance Networks with Sparse Label Assignment for Whole
  Mammogram Classification
Deep Multi-instance Networks with Sparse Label Assignment for Whole Mammogram Classification
Wentao Zhu
Qi Lou
Y. S. Vang
Xiaohui Xie
60
275
0
23 May 2017
A Unified Approach to Interpreting Model Predictions
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
22,018
0
22 May 2017
Learning Important Features Through Propagating Activation Differences
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
203
3,881
0
10 Apr 2017
Prototypical Networks for Few-shot Learning
Prototypical Networks for Few-shot Learning
Jake C. Snell
Kevin Swersky
R. Zemel
303
8,150
0
15 Mar 2017
Axiomatic Attribution for Deep Networks
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OODFAtt
193
6,018
0
04 Mar 2017
A Survey on Deep Learning in Medical Image Analysis
A Survey on Deep Learning in Medical Image Analysis
G. Litjens
Thijs Kooi
B. Bejnordi
A. Setio
F. Ciompi
Mohsen Ghafoorian
Jeroen van der Laak
Bram van Ginneken
C. I. Sánchez
OOD
689
10,799
0
19 Feb 2017
SonoNet: Real-Time Detection and Localisation of Fetal Standard Scan
  Planes in Freehand Ultrasound
SonoNet: Real-Time Detection and Localisation of Fetal Standard Scan Planes in Freehand Ultrasound
Christian F. Baumgartner
Konstantinos Kamnitsas
Jacqueline Matthew
Tara P. Fletcher
Sandra Smith
Lisa M. Koch
Bernhard Kainz
Daniel Rueckert
68
317
0
16 Dec 2016
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based
  Localization
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
324
20,086
0
07 Oct 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAttFaML
1.2K
17,033
0
16 Feb 2016
Learning Deep Features for Discriminative Localization
Learning Deep Features for Discriminative Localization
Bolei Zhou
A. Khosla
Àgata Lapedriza
A. Oliva
Antonio Torralba
SSLSSegFAtt
253
9,338
0
14 Dec 2015
Striving for Simplicity: The All Convolutional Net
Striving for Simplicity: The All Convolutional Net
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
FAtt
251
4,681
0
21 Dec 2014
1