Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2406.04227
Cited By
R-CONV: An Analytical Approach for Efficient Data Reconstruction via Convolutional Gradients
6 June 2024
T. Eltaras
Q. Malluhi
Alessandro Savino
S. Di Carlo
Adnan Qayyum
Junaid Qadir
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"R-CONV: An Analytical Approach for Efficient Data Reconstruction via Convolutional Gradients"
6 / 6 papers shown
Title
Understanding Training-Data Leakage from Gradients in Neural Networks for Image Classification
Cangxiong Chen
Neill D. F. Campbell
FedML
44
24
0
19 Nov 2021
R-GAP: Recursive Gradient Attack on Privacy
Junyi Zhu
Matthew Blaschko
FedML
54
136
0
15 Oct 2020
Inverting Gradients -- How easy is it to break privacy in federated learning?
Jonas Geiping
Hartmut Bauermeister
Hannah Dröge
Michael Moeller
FedML
100
1,223
0
31 Mar 2020
Exploiting Unintended Feature Leakage in Collaborative Learning
Luca Melis
Congzheng Song
Emiliano De Cristofaro
Vitaly Shmatikov
FedML
142
1,474
0
10 May 2018
Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning
Briland Hitaj
G. Ateniese
Fernando Perez-Cruz
FedML
115
1,401
0
24 Feb 2017
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
401
17,468
0
17 Feb 2016
1