Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2406.04070
Cited By
Batch-in-Batch: a new adversarial training framework for initial perturbation and sample selection
6 June 2024
Yinting Wu
Pai Peng
Bo Cai
Le Li
.
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Batch-in-Batch: a new adversarial training framework for initial perturbation and sample selection"
20 / 20 papers shown
Title
Robust Models are less Over-Confident
Julia Grabinski
Paul Gavrikov
J. Keuper
Margret Keuper
AAML
48
24
0
12 Oct 2022
SegPGD: An Effective and Efficient Adversarial Attack for Evaluating and Boosting Segmentation Robustness
Jindong Gu
Hengshuang Zhao
Volker Tresp
Philip Torr
AAML
45
76
0
25 Jul 2022
Robustness and Accuracy Could Be Reconcilable by (Proper) Definition
Tianyu Pang
Min Lin
Xiao Yang
Junyi Zhu
Shuicheng Yan
94
122
0
21 Feb 2022
Label Smoothing and Adversarial Robustness
Chaohao Fu
Hongbin Chen
Na Ruan
Weijia Jia
AAML
33
12
0
17 Sep 2020
Overfitting in adversarially robust deep learning
Leslie Rice
Eric Wong
Zico Kolter
94
800
0
26 Feb 2020
Boosting Adversarial Training with Hypersphere Embedding
Tianyu Pang
Xiao Yang
Yinpeng Dong
Kun Xu
Jun Zhu
Hang Su
AAML
68
156
0
20 Feb 2020
Label Smoothing and Logit Squeezing: A Replacement for Adversarial Training?
Ali Shafahi
Amin Ghiasi
Furong Huang
Tom Goldstein
AAML
59
40
0
25 Oct 2019
Adversarial Examples Are Not Bugs, They Are Features
Andrew Ilyas
Shibani Santurkar
Dimitris Tsipras
Logan Engstrom
Brandon Tran
Aleksander Madry
SILM
89
1,837
0
06 May 2019
Adversarial Training for Free!
Ali Shafahi
Mahyar Najibi
Amin Ghiasi
Zheng Xu
John P. Dickerson
Christoph Studer
L. Davis
Gavin Taylor
Tom Goldstein
AAML
125
1,245
0
29 Apr 2019
Why ReLU networks yield high-confidence predictions far away from the training data and how to mitigate the problem
Matthias Hein
Maksym Andriushchenko
Julian Bitterwolf
OODD
167
558
0
13 Dec 2018
Adversarial Attacks and Defences: A Survey
Anirban Chakraborty
Manaar Alam
Vishal Dey
Anupam Chattopadhyay
Debdeep Mukhopadhyay
AAML
OOD
67
679
0
28 Sep 2018
Don't Use Large Mini-Batches, Use Local SGD
Tao R. Lin
Sebastian U. Stich
Kumar Kshitij Patel
Martin Jaggi
111
433
0
22 Aug 2018
Evaluating and Understanding the Robustness of Adversarial Logit Pairing
Logan Engstrom
Andrew Ilyas
Anish Athalye
AAML
57
141
0
26 Jul 2018
Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning
Battista Biggio
Fabio Roli
AAML
116
1,409
0
08 Dec 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
292
12,060
0
19 Jun 2017
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
419
2,936
0
15 Sep 2016
Wide Residual Networks
Sergey Zagoruyko
N. Komodakis
330
7,980
0
23 May 2016
Identity Mappings in Deep Residual Networks
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
350
10,180
0
16 Mar 2016
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DV
BDL
872
27,350
0
02 Dec 2015
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
259
19,045
0
20 Dec 2014
1