ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.03229
  4. Cited By
Global Clipper: Enhancing Safety and Reliability of Transformer-based
  Object Detection Models

Global Clipper: Enhancing Safety and Reliability of Transformer-based Object Detection Models

5 June 2024
Qutub Syed Sha
Michael Paulitsch
Karthik Pattabiraman
Korbinian Hagn
Fabian Oboril
Cornelius Buerkle
Kay-Ulrich Scholl
Gereon Hinz
Alois C. Knoll
ArXivPDFHTML

Papers citing "Global Clipper: Enhancing Safety and Reliability of Transformer-based Object Detection Models"

4 / 4 papers shown
Title
Lite DETR : An Interleaved Multi-Scale Encoder for Efficient DETR
Lite DETR : An Interleaved Multi-Scale Encoder for Efficient DETR
Feng Li
Ailing Zeng
Siyi Liu
Hao Zhang
Hongyang Li
Lei Zhang
L. Ni
ViT
36
67
0
13 Mar 2023
Soft Error Reliability Analysis of Vision Transformers
Soft Error Reliability Analysis of Vision Transformers
Xing-xiong Xue
Cheng Liu
Ying Wang
Bing Yang
Tao Luo
Lefei Zhang
Huawei Li
Xiaowei Li
39
14
0
21 Feb 2023
Hardware faults that matter: Understanding and Estimating the safety
  impact of hardware faults on object detection DNNs
Hardware faults that matter: Understanding and Estimating the safety impact of hardware faults on object detection DNNs
S. Qutub
Florian Geissler
Ya-ti Peng
Ralf Gräfe
Michael Paulitsch
Gereon Hinz
Alois C. Knoll
AAML
29
5
0
07 Sep 2022
A Uniform Framework for Anomaly Detection in Deep Neural Networks
A Uniform Framework for Anomaly Detection in Deep Neural Networks
Fangzhen Zhao
Chenyi Zhang
Naipeng Dong
Zefeng You
Zhenxin Wu
AAML
OOD
OODD
30
9
0
06 Oct 2021
1