Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2406.03229
Cited By
Global Clipper: Enhancing Safety and Reliability of Transformer-based Object Detection Models
5 June 2024
Qutub Syed Sha
Michael Paulitsch
Karthik Pattabiraman
Korbinian Hagn
Fabian Oboril
Cornelius Buerkle
Kay-Ulrich Scholl
Gereon Hinz
Alois C. Knoll
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Global Clipper: Enhancing Safety and Reliability of Transformer-based Object Detection Models"
4 / 4 papers shown
Title
Lite DETR : An Interleaved Multi-Scale Encoder for Efficient DETR
Feng Li
Ailing Zeng
Siyi Liu
Hao Zhang
Hongyang Li
Lei Zhang
L. Ni
ViT
36
67
0
13 Mar 2023
Soft Error Reliability Analysis of Vision Transformers
Xing-xiong Xue
Cheng Liu
Ying Wang
Bing Yang
Tao Luo
Lefei Zhang
Huawei Li
Xiaowei Li
39
14
0
21 Feb 2023
Hardware faults that matter: Understanding and Estimating the safety impact of hardware faults on object detection DNNs
S. Qutub
Florian Geissler
Ya-ti Peng
Ralf Gräfe
Michael Paulitsch
Gereon Hinz
Alois C. Knoll
AAML
29
5
0
07 Sep 2022
A Uniform Framework for Anomaly Detection in Deep Neural Networks
Fangzhen Zhao
Chenyi Zhang
Naipeng Dong
Zefeng You
Zhenxin Wu
AAML
OOD
OODD
30
9
0
06 Oct 2021
1