ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.02883
  4. Cited By
Nonlinear Transformations Against Unlearnable Datasets

Nonlinear Transformations Against Unlearnable Datasets

5 June 2024
T. Hapuarachchi
Jing Lin
Kaiqi Xiong
Mohamed Rahouti
Gitte Ost
ArXivPDFHTML

Papers citing "Nonlinear Transformations Against Unlearnable Datasets"

24 / 24 papers shown
Title
What Can We Learn from Unlearnable Datasets?
What Can We Learn from Unlearnable Datasets?
Pedro Sandoval-Segura
Vasu Singla
Jonas Geiping
Micah Goldblum
Tom Goldstein
60
15
0
30 May 2023
Learning the Unlearnable: Adversarial Augmentations Suppress Unlearnable
  Example Attacks
Learning the Unlearnable: Adversarial Augmentations Suppress Unlearnable Example Attacks
Tianrui Qin
Xitong Gao
Juanjuan Zhao
Kejiang Ye
Chengzhong Xu
AAML
MU
58
27
0
27 Mar 2023
Image Shortcut Squeezing: Countering Perturbative Availability Poisons
  with Compression
Image Shortcut Squeezing: Countering Perturbative Availability Poisons with Compression
Zhuoran Liu
Zhengyu Zhao
Martha Larson
68
37
0
31 Jan 2023
Self-Ensemble Protection: Training Checkpoints Are Good Data Protectors
Self-Ensemble Protection: Training Checkpoints Are Good Data Protectors
Sizhe Chen
Geng Yuan
Xinwen Cheng
Yifan Gong
Minghai Qin
Yanzhi Wang
Xiaolin Huang
AAML
51
20
0
22 Nov 2022
Generative Poisoning Using Random Discriminators
Generative Poisoning Using Random Discriminators
Dirren van Vlijmen
A. Kolmus
Zhuoran Liu
Zhengyu Zhao
Martha Larson
43
2
0
02 Nov 2022
Autoregressive Perturbations for Data Poisoning
Autoregressive Perturbations for Data Poisoning
Pedro Sandoval-Segura
Vasu Singla
Jonas Geiping
Micah Goldblum
Tom Goldstein
David Jacobs
AAML
57
41
0
08 Jun 2022
Indiscriminate Poisoning Attacks on Unsupervised Contrastive Learning
Indiscriminate Poisoning Attacks on Unsupervised Contrastive Learning
Hao He
Kaiwen Zha
Dina Katabi
AAML
74
34
0
22 Feb 2022
Can Adversarial Training Be Manipulated By Non-Robust Features?
Can Adversarial Training Be Manipulated By Non-Robust Features?
Lue Tao
Lei Feng
Hongxin Wei
Jinfeng Yi
Sheng-Jun Huang
Songcan Chen
AAML
196
17
0
31 Jan 2022
Fooling Adversarial Training with Inducing Noise
Fooling Adversarial Training with Inducing Noise
Zhirui Wang
Yifei Wang
Yisen Wang
60
14
0
19 Nov 2021
Adversarial Examples Make Strong Poisons
Adversarial Examples Make Strong Poisons
Liam H. Fowl
Micah Goldblum
Ping Yeh-Chiang
Jonas Geiping
Wojtek Czaja
Tom Goldstein
SILM
80
135
0
21 Jun 2021
Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial
  Training
Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training
Lue Tao
Lei Feng
Jinfeng Yi
Sheng-Jun Huang
Songcan Chen
AAML
75
73
0
09 Feb 2021
Unlearnable Examples: Making Personal Data Unexploitable
Unlearnable Examples: Making Personal Data Unexploitable
Hanxun Huang
Xingjun Ma
S. Erfani
James Bailey
Yisen Wang
MIACV
215
193
0
13 Jan 2021
DeepSweep: An Evaluation Framework for Mitigating DNN Backdoor Attacks
  using Data Augmentation
DeepSweep: An Evaluation Framework for Mitigating DNN Backdoor Attacks using Data Augmentation
Han Qiu
Yi Zeng
Shangwei Guo
Tianwei Zhang
Meikang Qiu
B. Thuraisingham
AAML
62
191
0
13 Dec 2020
FMix: Enhancing Mixed Sample Data Augmentation
FMix: Enhancing Mixed Sample Data Augmentation
Ethan Harris
Antonia Marcu
Matthew Painter
M. Niranjan
Adam Prugel-Bennett
Jonathon S. Hare
AAML
53
26
0
27 Feb 2020
Learning to Confuse: Generating Training Time Adversarial Data with
  Auto-Encoder
Learning to Confuse: Generating Training Time Adversarial Data with Auto-Encoder
Ji Feng
Qi-Zhi Cai
Zhi Zhou
AAML
54
105
0
22 May 2019
CutMix: Regularization Strategy to Train Strong Classifiers with
  Localizable Features
CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features
Sangdoo Yun
Dongyoon Han
Seong Joon Oh
Sanghyuk Chun
Junsuk Choe
Y. Yoo
OOD
606
4,777
0
13 May 2019
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
Arthur Jacot
Franck Gabriel
Clément Hongler
263
3,194
0
20 Jun 2018
Manipulating Machine Learning: Poisoning Attacks and Countermeasures for
  Regression Learning
Manipulating Machine Learning: Poisoning Attacks and Countermeasures for Regression Learning
Matthew Jagielski
Alina Oprea
Battista Biggio
Chang-rui Liu
Cristina Nita-Rotaru
Yue Liu
AAML
85
759
0
01 Apr 2018
Deep Learning using Rectified Linear Units (ReLU)
Deep Learning using Rectified Linear Units (ReLU)
Abien Fred Agarap
58
3,223
0
22 Mar 2018
A Kernel Theory of Modern Data Augmentation
A Kernel Theory of Modern Data Augmentation
Tri Dao
Albert Gu
Alexander J. Ratner
Virginia Smith
Christopher De Sa
Christopher Ré
100
193
0
16 Mar 2018
Towards Deep Learning Models Resistant to Adversarial Attacks
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
299
12,060
0
19 Jun 2017
Understanding Black-box Predictions via Influence Functions
Understanding Black-box Predictions via Influence Functions
Pang Wei Koh
Percy Liang
TDI
187
2,882
0
14 Mar 2017
Membership Inference Attacks against Machine Learning Models
Membership Inference Attacks against Machine Learning Models
Reza Shokri
M. Stronati
Congzheng Song
Vitaly Shmatikov
SLR
MIALM
MIACV
238
4,120
0
18 Oct 2016
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
1.6K
100,330
0
04 Sep 2014
1