Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2406.01461
Cited By
Hardness of Learning Neural Networks under the Manifold Hypothesis
3 June 2024
B. Kiani
Jason Wang
Melanie Weber
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Hardness of Learning Neural Networks under the Manifold Hypothesis"
8 / 8 papers shown
Title
SGD learning on neural networks: leap complexity and saddle-to-saddle dynamics
Emmanuel Abbe
Enric Boix-Adserà
Theodor Misiakiewicz
FedML
MLT
79
73
0
21 Feb 2023
Sampling is as easy as learning the score: theory for diffusion models with minimal data assumptions
Sitan Chen
Sinho Chewi
Jungshian Li
Yuanzhi Li
Adil Salim
Anru R. Zhang
DiffM
135
247
0
22 Sep 2022
The Intrinsic Dimension of Images and Its Impact on Learning
Phillip E. Pope
Chen Zhu
Ahmed Abdelkader
Micah Goldblum
Tom Goldstein
197
260
0
18 Apr 2021
From Local Pseudorandom Generators to Hardness of Learning
Amit Daniely
Gal Vardi
109
30
0
20 Jan 2021
Hyperbolic Deep Neural Networks: A Survey
Wei Peng
Tuomas Varanka
Abdelrahman Mostafa
Henglin Shi
Guoying Zhao
AI4CE
45
133
0
12 Jan 2021
Deep Networks and the Multiple Manifold Problem
Sam Buchanan
D. Gilboa
John N. Wright
166
39
0
25 Aug 2020
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
259
3,239
0
24 Nov 2016
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg
3DV
321
75,834
0
18 May 2015
1