ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.01290
  4. Cited By
Resource-constrained Fairness

Resource-constrained Fairness

3 June 2024
Sofie Goethals
Eoin Delaney
Brent Mittelstadt
Christopher Russell
    FaML
ArXivPDFHTML

Papers citing "Resource-constrained Fairness"

23 / 23 papers shown
Title
OxonFair: A Flexible Toolkit for Algorithmic Fairness
OxonFair: A Flexible Toolkit for Algorithmic Fairness
Eoin Delaney
Zihao Fu
Sandra Wachter
Brent Mittelstadt
Chris Russell
FaML
84
3
0
30 Jun 2024
The Unfairness of Fair Machine Learning: Levelling down and strict
  egalitarianism by default
The Unfairness of Fair Machine Learning: Levelling down and strict egalitarianism by default
Brent Mittelstadt
Sandra Wachter
Chris Russell
FaML
22
47
0
05 Feb 2023
MEDFAIR: Benchmarking Fairness for Medical Imaging
MEDFAIR: Benchmarking Fairness for Medical Imaging
Yongshuo Zong
Yongxin Yang
Timothy M. Hospedales
OOD
100
63
0
04 Oct 2022
Bias Mitigation for Machine Learning Classifiers: A Comprehensive Survey
Bias Mitigation for Machine Learning Classifiers: A Comprehensive Survey
Max Hort
Zhenpeng Chen
Jie M. Zhang
Mark Harman
Federica Sarro
FaML
AI4CE
52
167
0
14 Jul 2022
Are Two Heads the Same as One? Identifying Disparate Treatment in Fair
  Neural Networks
Are Two Heads the Same as One? Identifying Disparate Treatment in Fair Neural Networks
Michael Lohaus
Matthäus Kleindessner
K. Kenthapadi
Francesco Locatello
Chris Russell
48
12
0
09 Apr 2022
Repairing Regressors for Fair Binary Classification at Any Decision
  Threshold
Repairing Regressors for Fair Binary Classification at Any Decision Threshold
Kweku Kwegyir-Aggrey
A. Feder Cooper
Jessica Dai
John P Dickerson
Keegan E. Hines
Suresh Venkatasubramanian
FaML
39
7
0
14 Mar 2022
A survey on datasets for fairness-aware machine learning
A survey on datasets for fairness-aware machine learning
Tai Le Quy
Arjun Roy
Vasileios Iosifidis
Wenbin Zhang
Eirini Ntoutsi
FaML
55
245
0
01 Oct 2021
Evaluating Deep Neural Networks Trained on Clinical Images in
  Dermatology with the Fitzpatrick 17k Dataset
Evaluating Deep Neural Networks Trained on Clinical Images in Dermatology with the Fitzpatrick 17k Dataset
Matthew Groh
Caleb Harris
L. Soenksen
Felix Lau
Rachel Han
Aerin Kim
A. Koochek
Omar Badri
133
188
0
20 Apr 2021
Fairness On The Ground: Applying Algorithmic Fairness Approaches to
  Production Systems
Fairness On The Ground: Applying Algorithmic Fairness Approaches to Production Systems
Chloé Bakalar
Renata Barreto
Stevie Bergman
Miranda Bogen
Bobbie Chern
...
J. Simons
Jonathan Tannen
Edmund Tong
Kate Vredenburgh
Jiejing Zhao
FaML
65
28
0
10 Mar 2021
Empirical observation of negligible fairness-accuracy trade-offs in
  machine learning for public policy
Empirical observation of negligible fairness-accuracy trade-offs in machine learning for public policy
Kit T. Rodolfa
Hemank Lamba
Rayid Ghani
62
88
0
05 Dec 2020
Minimax Pareto Fairness: A Multi Objective Perspective
Minimax Pareto Fairness: A Multi Objective Perspective
Natalia Martínez
Martín Bertrán
Guillermo Sapiro
FaML
52
191
0
03 Nov 2020
Towards Fairness in Visual Recognition: Effective Strategies for Bias
  Mitigation
Towards Fairness in Visual Recognition: Effective Strategies for Bias Mitigation
Zeyu Wang
Klint Qinami
Yannis Karakozis
Kyle Genova
P. Nair
Kenji Hata
Olga Russakovsky
58
359
0
26 Nov 2019
A Survey on Bias and Fairness in Machine Learning
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
501
4,308
0
23 Aug 2019
AI Fairness 360: An Extensible Toolkit for Detecting, Understanding, and
  Mitigating Unwanted Algorithmic Bias
AI Fairness 360: An Extensible Toolkit for Detecting, Understanding, and Mitigating Unwanted Algorithmic Bias
Rachel K. E. Bellamy
Kuntal Dey
Michael Hind
Samuel C. Hoffman
Stephanie Houde
...
Diptikalyan Saha
P. Sattigeri
Moninder Singh
Kush R. Varshney
Yunfeng Zhang
FaML
SyDa
94
803
0
03 Oct 2018
Fair Algorithms for Learning in Allocation Problems
Fair Algorithms for Learning in Allocation Problems
Hadi Elzayn
S. Jabbari
Christopher Jung
Michael Kearns
Seth Neel
Aaron Roth
Zachary Schutzman
FaML
33
96
0
30 Aug 2018
Why Is My Classifier Discriminatory?
Why Is My Classifier Discriminatory?
Irene Y. Chen
Fredrik D. Johansson
David Sontag
FaML
65
395
0
30 May 2018
Delayed Impact of Fair Machine Learning
Delayed Impact of Fair Machine Learning
Lydia T. Liu
Sarah Dean
Esther Rolf
Max Simchowitz
Moritz Hardt
FaML
79
475
0
12 Mar 2018
A comparative study of fairness-enhancing interventions in machine
  learning
A comparative study of fairness-enhancing interventions in machine learning
Sorelle A. Friedler
C. Scheidegger
Suresh Venkatasubramanian
Sonam Choudhary
Evan P. Hamilton
Derek Roth
FaML
90
639
0
13 Feb 2018
Mitigating Unwanted Biases with Adversarial Learning
Mitigating Unwanted Biases with Adversarial Learning
B. Zhang
Blake Lemoine
Margaret Mitchell
FaML
127
1,373
0
22 Jan 2018
Equality of Opportunity in Supervised Learning
Equality of Opportunity in Supervised Learning
Moritz Hardt
Eric Price
Nathan Srebro
FaML
139
4,276
0
07 Oct 2016
XGBoost: A Scalable Tree Boosting System
XGBoost: A Scalable Tree Boosting System
Tianqi Chen
Carlos Guestrin
474
37,815
0
09 Mar 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.6K
192,638
0
10 Dec 2015
Deep Learning Face Attributes in the Wild
Deep Learning Face Attributes in the Wild
Ziwei Liu
Ping Luo
Xiaogang Wang
Xiaoou Tang
CVBM
219
8,351
0
28 Nov 2014
1