ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2406.01073
  4. Cited By
Understanding the Cross-Domain Capabilities of Video-Based Few-Shot
  Action Recognition Models

Understanding the Cross-Domain Capabilities of Video-Based Few-Shot Action Recognition Models

3 June 2024
Georgia Markham
M. Balamurali
Andrew J. Hill
ArXivPDFHTML

Papers citing "Understanding the Cross-Domain Capabilities of Video-Based Few-Shot Action Recognition Models"

2 / 2 papers shown
Title
A Comprehensive Review of Few-shot Action Recognition
A Comprehensive Review of Few-shot Action Recognition
Yuyang Wanyan
Xiaoshan Yang
Weiming Dong
Changsheng Xu
VLM
74
3
0
20 Jul 2024
Discriminative Sample-Guided and Parameter-Efficient Feature Space
  Adaptation for Cross-Domain Few-Shot Learning
Discriminative Sample-Guided and Parameter-Efficient Feature Space Adaptation for Cross-Domain Few-Shot Learning
Rashindrie Perera
Saman K. Halgamuge
48
2
0
07 Mar 2024
1