ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.19597
  4. Cited By
SVFT: Parameter-Efficient Fine-Tuning with Singular Vectors

SVFT: Parameter-Efficient Fine-Tuning with Singular Vectors

30 May 2024
Vijay Lingam
Atula Tejaswi
Aditya Vavre
Aneesh Shetty
Gautham Krishna Gudur
Joydeep Ghosh
Alexandros G. Dimakis
Eunsol Choi
Aleksandar Bojchevski
Sujay Sanghavi
ArXivPDFHTML

Papers citing "SVFT: Parameter-Efficient Fine-Tuning with Singular Vectors"

4 / 4 papers shown
Title
DiTASK: Multi-Task Fine-Tuning with Diffeomorphic Transformations
DiTASK: Multi-Task Fine-Tuning with Diffeomorphic Transformations
Krishna Sri Ipsit Mantri
Carola-Bibiane Schönlieb
Bruno Ribeiro
Chaim Baskin
Moshe Eliasof
43
0
0
09 Feb 2025
RandLoRA: Full-rank parameter-efficient fine-tuning of large models
RandLoRA: Full-rank parameter-efficient fine-tuning of large models
Paul Albert
Frederic Z. Zhang
Hemanth Saratchandran
Cristian Rodriguez-Opazo
Anton van den Hengel
Ehsan Abbasnejad
108
1
0
03 Feb 2025
Gemma: Open Models Based on Gemini Research and Technology
Gemma: Open Models Based on Gemini Research and Technology
Gemma Team
Gemma Team Thomas Mesnard
Cassidy Hardin
Robert Dadashi
Surya Bhupatiraju
...
Armand Joulin
Noah Fiedel
Evan Senter
Alek Andreev
Kathleen Kenealy
VLM
LLMAG
131
434
0
13 Mar 2024
Teaching Machines to Read and Comprehend
Teaching Machines to Read and Comprehend
Karl Moritz Hermann
Tomás Kociský
Edward Grefenstette
L. Espeholt
W. Kay
Mustafa Suleyman
Phil Blunsom
205
3,513
0
10 Jun 2015
1