ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.19590
  4. Cited By
Weights Augmentation: it has never ever ever ever let her model down

Weights Augmentation: it has never ever ever ever let her model down

30 May 2024
Junbin Zhuang
Guiguang Din
Yunyi Yan
ArXivPDFHTML

Papers citing "Weights Augmentation: it has never ever ever ever let her model down"

16 / 16 papers shown
Title
Effective Data Augmentation With Diffusion Models
Effective Data Augmentation With Diffusion Models
Brandon Trabucco
Kyle Doherty
Max Gurinas
Ruslan Salakhutdinov
DiffM
VLM
74
249
0
07 Feb 2023
Stop Wasting My Time! Saving Days of ImageNet and BERT Training with
  Latest Weight Averaging
Stop Wasting My Time! Saving Days of ImageNet and BERT Training with Latest Weight Averaging
Jean Kaddour
MoMe
3DH
49
41
0
29 Sep 2022
Image Data Augmentation for Deep Learning: A Survey
Image Data Augmentation for Deep Learning: A Survey
Suorong Yang
Wei-Ting Xiao
Mengcheng Zhang
Suhan Guo
Jian Zhao
S. Furao
59
248
0
19 Apr 2022
Robust fine-tuning of zero-shot models
Robust fine-tuning of zero-shot models
Mitchell Wortsman
Gabriel Ilharco
Jong Wook Kim
Mike Li
Simon Kornblith
...
Raphael Gontijo-Lopes
Hannaneh Hajishirzi
Ali Farhadi
Hongseok Namkoong
Ludwig Schmidt
VLM
114
721
0
04 Sep 2021
RepVGG: Making VGG-style ConvNets Great Again
RepVGG: Making VGG-style ConvNets Great Again
Xiaohan Ding
Xinming Zhang
Ningning Ma
Jungong Han
Guiguang Ding
Jian Sun
245
1,583
0
11 Jan 2021
Improving Auto-Augment via Augmentation-Wise Weight Sharing
Improving Auto-Augment via Augmentation-Wise Weight Sharing
Keyu Tian
Chen Lin
Ming Sun
Luping Zhou
Junjie Yan
Wanli Ouyang
53
48
0
30 Sep 2020
BatchEnsemble: An Alternative Approach to Efficient Ensemble and
  Lifelong Learning
BatchEnsemble: An Alternative Approach to Efficient Ensemble and Lifelong Learning
Yeming Wen
Dustin Tran
Jimmy Ba
OOD
FedML
UQCV
135
491
0
17 Feb 2020
How Can We Know What Language Models Know?
How Can We Know What Language Models Know?
Zhengbao Jiang
Frank F. Xu
Jun Araki
Graham Neubig
KELM
123
1,402
0
28 Nov 2019
Model Fusion via Optimal Transport
Model Fusion via Optimal Transport
Sidak Pal Singh
Martin Jaggi
MoMe
FedML
92
232
0
12 Oct 2019
RandAugment: Practical automated data augmentation with a reduced search
  space
RandAugment: Practical automated data augmentation with a reduced search space
E. D. Cubuk
Barret Zoph
Jonathon Shlens
Quoc V. Le
MQ
208
3,480
0
30 Sep 2019
Learning Data Augmentation Strategies for Object Detection
Learning Data Augmentation Strategies for Object Detection
Barret Zoph
E. D. Cubuk
Golnaz Ghiasi
Nayeon Lee
Jonathon Shlens
Quoc V. Le
78
531
0
26 Jun 2019
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
Mingxing Tan
Quoc V. Le
3DV
MedIm
129
18,058
0
28 May 2019
Be Your Own Teacher: Improve the Performance of Convolutional Neural
  Networks via Self Distillation
Be Your Own Teacher: Improve the Performance of Convolutional Neural Networks via Self Distillation
Linfeng Zhang
Jiebo Song
Anni Gao
Jingwei Chen
Chenglong Bao
Kaisheng Ma
FedML
60
857
0
17 May 2019
MobileNetV2: Inverted Residuals and Linear Bottlenecks
MobileNetV2: Inverted Residuals and Linear Bottlenecks
Mark Sandler
Andrew G. Howard
Menglong Zhu
A. Zhmoginov
Liang-Chieh Chen
169
19,204
0
13 Jan 2018
Going Deeper with Convolutions
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
397
43,589
0
17 Sep 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
1.3K
100,213
0
04 Sep 2014
1