ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.18560
  4. Cited By
Potential Field Based Deep Metric Learning

Potential Field Based Deep Metric Learning

28 May 2024
Shubhang Bhatnagar
Narendra Ahuja
ArXivPDFHTML

Papers citing "Potential Field Based Deep Metric Learning"

40 / 40 papers shown
Title
Improving Multi-label Recognition using Class Co-Occurrence
  Probabilities
Improving Multi-label Recognition using Class Co-Occurrence Probabilities
Samyak Rawlekar
Shubhang Bhatnagar
Vishnuvardhan Pogunulu Srinivasulu
Narendra Ahuja
VLM
96
6
0
24 Apr 2024
Piecewise-Linear Manifolds for Deep Metric Learning
Piecewise-Linear Manifolds for Deep Metric Learning
Shubhang Bhatnagar
Narendra Ahuja
100
4
0
22 Mar 2024
HIER: Metric Learning Beyond Class Labels via Hierarchical
  Regularization
HIER: Metric Learning Beyond Class Labels via Hierarchical Regularization
Sungyeon Kim
Boseung Jung
Suha Kwak
48
17
0
29 Dec 2022
Supervised Metric Learning to Rank for Retrieval via Contextual
  Similarity Optimization
Supervised Metric Learning to Rank for Retrieval via Contextual Similarity Optimization
Christopher Liao
Theodoros Tsiligkaridis
Brian Kulis
SSL
61
7
0
04 Oct 2022
A Non-isotropic Probabilistic Take on Proxy-based Deep Metric Learning
A Non-isotropic Probabilistic Take on Proxy-based Deep Metric Learning
Michael Kirchhof
Karsten Roth
Zeynep Akata
Enkelejda Kasneci
62
13
0
08 Jul 2022
Hyperbolic Vision Transformers: Combining Improvements in Metric
  Learning
Hyperbolic Vision Transformers: Combining Improvements in Metric Learning
Aleksandr Ermolov
L. Mirvakhabova
Valentin Khrulkov
N. Sebe
Ivan Oseledets
63
104
0
21 Mar 2022
Non-isotropy Regularization for Proxy-based Deep Metric Learning
Non-isotropy Regularization for Proxy-based Deep Metric Learning
Karsten Roth
Oriol Vinyals
Zeynep Akata
82
39
0
16 Mar 2022
Deep Relational Metric Learning
Deep Relational Metric Learning
Wenzhao Zheng
Borui Zhang
Jiwen Lu
Jie Zhou
73
43
0
23 Aug 2021
Deep Metric Learning for Open World Semantic Segmentation
Deep Metric Learning for Open World Semantic Segmentation
Jun Cen
Peng Yun
Junhao Cai
M. Y. Wang
Ming-Yuan Liu
47
85
0
10 Aug 2021
Emerging Properties in Self-Supervised Vision Transformers
Emerging Properties in Self-Supervised Vision Transformers
Mathilde Caron
Hugo Touvron
Ishan Misra
Hervé Jégou
Julien Mairal
Piotr Bojanowski
Armand Joulin
685
6,079
0
29 Apr 2021
Fewer is More: A Deep Graph Metric Learning Perspective Using Fewer
  Proxies
Fewer is More: A Deep Graph Metric Learning Perspective Using Fewer Proxies
Yuehua Zhu
Muli Yang
Cheng Deng
Wei Liu
71
56
0
26 Oct 2020
An Image is Worth 16x16 Words: Transformers for Image Recognition at
  Scale
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
Alexey Dosovitskiy
Lucas Beyer
Alexander Kolesnikov
Dirk Weissenborn
Xiaohua Zhai
...
Matthias Minderer
G. Heigold
Sylvain Gelly
Jakob Uszkoreit
N. Houlsby
ViT
654
41,103
0
22 Oct 2020
Rethinking preventing class-collapsing in metric learning with
  margin-based losses
Rethinking preventing class-collapsing in metric learning with margin-based losses
Elad Levi
Tete Xiao
Xiaolong Wang
Trevor Darrell
29
14
0
09 Jun 2020
DiVA: Diverse Visual Feature Aggregation for Deep Metric Learning
DiVA: Diverse Visual Feature Aggregation for Deep Metric Learning
Timo Milbich
Karsten Roth
Homanga Bharadhwaj
Samarth Sinha
Yoshua Bengio
Bjorn Ommer
Joseph Paul Cohen
92
66
0
28 Apr 2020
ProxyNCA++: Revisiting and Revitalizing Proxy Neighborhood Component
  Analysis
ProxyNCA++: Revisiting and Revitalizing Proxy Neighborhood Component Analysis
Eu Wern Teh
Terrance Devries
Graham W. Taylor
63
158
0
02 Apr 2020
Proxy Anchor Loss for Deep Metric Learning
Proxy Anchor Loss for Deep Metric Learning
Sungyeon Kim
Dongwon Kim
Minsu Cho
Suha Kwak
61
357
0
31 Mar 2020
A Metric Learning Reality Check
A Metric Learning Reality Check
Kevin Musgrave
Serge J. Belongie
Ser-Nam Lim
134
477
0
18 Mar 2020
Rethinking Zero-shot Video Classification: End-to-end Training for
  Realistic Applications
Rethinking Zero-shot Video Classification: End-to-end Training for Realistic Applications
Biagio Brattoli
Joseph Tighe
Fedor Zhdanov
Pietro Perona
Krzysztof Chalupka
VLM
165
130
0
03 Mar 2020
Circle Loss: A Unified Perspective of Pair Similarity Optimization
Circle Loss: A Unified Perspective of Pair Similarity Optimization
Yifan Sun
Changmao Cheng
Yuhan Zhang
Chi Zhang
Liang Zheng
Zhongdao Wang
Yichen Wei
86
858
0
25 Feb 2020
Revisiting Training Strategies and Generalization Performance in Deep
  Metric Learning
Revisiting Training Strategies and Generalization Performance in Deep Metric Learning
Karsten Roth
Timo Milbich
Samarth Sinha
Prateek Gupta
Bjorn Ommer
Joseph Paul Cohen
56
170
0
19 Feb 2020
SoftTriple Loss: Deep Metric Learning Without Triplet Sampling
SoftTriple Loss: Deep Metric Learning Without Triplet Sampling
Qi Qian
Lei Shang
Baigui Sun
Juhua Hu
Hao Li
Rong Jin
66
374
0
11 Sep 2019
Multi-Similarity Loss with General Pair Weighting for Deep Metric
  Learning
Multi-Similarity Loss with General Pair Weighting for Deep Metric Learning
Xun Wang
Xintong Han
Weilin Huang
Dengke Dong
Matthew R. Scott
77
750
0
14 Apr 2019
Improved Embeddings with Easy Positive Triplet Mining
Improved Embeddings with Easy Positive Triplet Mining
Hong Xuan
Abby Stylianou
Robert Pless
76
134
0
08 Apr 2019
Signal-to-Noise Ratio: A Robust Distance Metric for Deep Metric Learning
Signal-to-Noise Ratio: A Robust Distance Metric for Deep Metric Learning
Tongtong Yuan
Weihong Deng
Jian Tang
Yinan Tang
Binghui Chen
44
71
0
04 Apr 2019
The Importance of Metric Learning for Robotic Vision: Open Set
  Recognition and Active Learning
The Importance of Metric Learning for Robotic Vision: Open Set Recognition and Active Learning
Benjamin J. Meyer
Tom Drummond
40
33
0
27 Feb 2019
Deep Metric Learning with Hierarchical Triplet Loss
Deep Metric Learning with Hierarchical Triplet Loss
Weifeng Ge
Weilin Huang
Dengke Dong
Matthew R. Scott
169
413
0
16 Oct 2018
CosFace: Large Margin Cosine Loss for Deep Face Recognition
CosFace: Large Margin Cosine Loss for Deep Face Recognition
Haobo Wang
Yitong Wang
Zheng Zhou
Xing Ji
Dihong Gong
Jin Zhou
Zhifeng Li
Wei Liu
CVBM
MQ
130
2,507
0
29 Jan 2018
Learning to Compare: Relation Network for Few-Shot Learning
Learning to Compare: Relation Network for Few-Shot Learning
Flood Sung
Yongxin Yang
Li Zhang
Tao Xiang
Philip Torr
Timothy M. Hospedales
295
4,050
0
16 Nov 2017
Sampling Matters in Deep Embedding Learning
Sampling Matters in Deep Embedding Learning
Chaoxia Wu
R. Manmatha
Alex Smola
Philipp Krahenbuhl
95
923
0
23 Jun 2017
SphereFace: Deep Hypersphere Embedding for Face Recognition
SphereFace: Deep Hypersphere Embedding for Face Recognition
Weiyang Liu
Yandong Wen
Zhiding Yu
Ming Li
Bhiksha Raj
Le Song
CVBM
232
2,801
0
26 Apr 2017
Beyond triplet loss: a deep quadruplet network for person
  re-identification
Beyond triplet loss: a deep quadruplet network for person re-identification
Weihua Chen
Xiaotang Chen
Jianguo Zhang
Kaiqi Huang
87
1,140
0
06 Apr 2017
Smart Mining for Deep Metric Learning
Smart Mining for Deep Metric Learning
Ben Harwood
B. V. Kumar
G. Carneiro
Ian Reid
Tom Drummond
57
350
0
05 Apr 2017
No Fuss Distance Metric Learning using Proxies
No Fuss Distance Metric Learning using Proxies
Yair Movshovitz-Attias
Alexander Toshev
Thomas Leung
Sergey Ioffe
Saurabh Singh
85
641
0
21 Mar 2017
Prototypical Networks for Few-shot Learning
Prototypical Networks for Few-shot Learning
Jake C. Snell
Kevin Swersky
R. Zemel
300
8,134
0
15 Mar 2017
Hard-Aware Deeply Cascaded Embedding
Hard-Aware Deeply Cascaded Embedding
Yuhui Yuan
Kuiyuan Yang
Chao Zhang
91
302
0
17 Nov 2016
Joint Detection and Identification Feature Learning for Person Search
Joint Detection and Identification Feature Learning for Person Search
Tong Xiao
Shuang Li
Bochao Wang
Liang Lin
Xiaogang Wang
101
823
0
07 Apr 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,020
0
10 Dec 2015
Deep Metric Learning via Lifted Structured Feature Embedding
Deep Metric Learning via Lifted Structured Feature Embedding
Hyun Oh Song
Yu Xiang
Stefanie Jegelka
Silvio Savarese
FedML
SSL
DML
94
1,643
0
19 Nov 2015
FaceNet: A Unified Embedding for Face Recognition and Clustering
FaceNet: A Unified Embedding for Face Recognition and Clustering
Florian Schroff
Dmitry Kalenichenko
James Philbin
3DH
370
13,145
0
12 Mar 2015
Going Deeper with Convolutions
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
465
43,658
0
17 Sep 2014
1