ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.18511
  4. Cited By
Feasibility and benefits of joint learning from MRI databases with
  different brain diseases and modalities for segmentation

Feasibility and benefits of joint learning from MRI databases with different brain diseases and modalities for segmentation

28 May 2024
Wentian Xu
Matthew Moffat
Thalia Seale
Ziyun Liang
Felix Wagner
Daniel Whitehouse
David Menon
Virginia Newcombe
Natalie Voets
Abhirup Banerjee
Konstantinos Kamnitsas
ArXivPDFHTML

Papers citing "Feasibility and benefits of joint learning from MRI databases with different brain diseases and modalities for segmentation"

2 / 2 papers shown
Title
IterMask3D: Unsupervised Anomaly Detection and Segmentation with Test-Time Iterative Mask Refinement in 3D Brain MR
IterMask3D: Unsupervised Anomaly Detection and Segmentation with Test-Time Iterative Mask Refinement in 3D Brain MR
Ziyun Liang
Xiaoqing Guo
Wentian Xu
Yasin Ibrahim
Natalie Voets
Pieter M Pretorius
J. A. Noble
Konstantinos Kamnitsas
29
0
0
07 Apr 2025
Feasibility of Federated Learning from Client Databases with Different
  Brain Diseases and MRI Modalities
Feasibility of Federated Learning from Client Databases with Different Brain Diseases and MRI Modalities
Felix Wagner
Wentian Xu
Pramit Saha
Ziyun Liang
Daniel Whitehouse
David Menon
Virginia Newcombe
Natalie Voets
J. A. Noble
Konstantinos Kamnitsas
43
4
0
17 Jun 2024
1