ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.17535
  4. Cited By
Calibrated Dataset Condensation for Faster Hyperparameter Search

Calibrated Dataset Condensation for Faster Hyperparameter Search

27 May 2024
Mucong Ding
Yuancheng Xu
Tahseen Rabbani
Xiaoyu Liu
Brian J Gravelle
Teresa M. Ranadive
Tai-Ching Tuan
Furong Huang
    DD
ArXiv (abs)PDFHTML

Papers citing "Calibrated Dataset Condensation for Faster Hyperparameter Search"

43 / 43 papers shown
Title
Condensing Graphs via One-Step Gradient Matching
Condensing Graphs via One-Step Gradient Matching
Wei Jin
Xianfeng Tang
Haoming Jiang
Zheng Li
Danqing Zhang
Jiliang Tang
Bin Ying
DD
91
111
0
15 Jun 2022
Dataset Condensation via Efficient Synthetic-Data Parameterization
Dataset Condensation via Efficient Synthetic-Data Parameterization
Jang-Hyun Kim
Jinuk Kim
Seong Joon Oh
Sangdoo Yun
Hwanjun Song
Joonhyun Jeong
Jung-Woo Ha
Hyun Oh Song
DD
493
168
0
30 May 2022
Dataset Distillation by Matching Training Trajectories
Dataset Distillation by Matching Training Trajectories
George Cazenavette
Tongzhou Wang
Antonio Torralba
Alexei A. Efros
Jun-Yan Zhu
FedMLDD
185
395
0
22 Mar 2022
AutoGEL: An Automated Graph Neural Network with Explicit Link
  Information
AutoGEL: An Automated Graph Neural Network with Explicit Link Information
Zhiling Wang
Shimin Di
Lei Chen
GNNAI4CE
72
39
0
02 Dec 2021
VQ-GNN: A Universal Framework to Scale up Graph Neural Networks using
  Vector Quantization
VQ-GNN: A Universal Framework to Scale up Graph Neural Networks using Vector Quantization
Mucong Ding
Kezhi Kong
Jingling Li
Chen Zhu
John P. Dickerson
Furong Huang
Tom Goldstein
GNNMQ
79
49
0
27 Oct 2021
Dataset Condensation with Distribution Matching
Dataset Condensation with Distribution Matching
Bo Zhao
Hakan Bilen
DD
77
308
0
08 Oct 2021
Rethinking Architecture Selection in Differentiable NAS
Rethinking Architecture Selection in Differentiable NAS
Ruochen Wang
Minhao Cheng
Xiangning Chen
Xiaocheng Tang
Cho-Jui Hsieh
71
177
0
10 Aug 2021
Deep Learning on a Data Diet: Finding Important Examples Early in
  Training
Deep Learning on a Data Diet: Finding Important Examples Early in Training
Mansheej Paul
Surya Ganguli
Gintare Karolina Dziugaite
121
461
0
15 Jul 2021
Graph Coarsening with Neural Networks
Graph Coarsening with Neural Networks
Chen Cai
Dingkang Wang
Yusu Wang
DD
179
68
0
02 Feb 2021
Submodular Combinatorial Information Measures with Applications in
  Machine Learning
Submodular Combinatorial Information Measures with Applications in Machine Learning
Rishabh K. Iyer
Ninad Khargoankar
J. Bilmes
Himanshu Asanani
55
94
0
27 Jun 2020
Flexible Dataset Distillation: Learn Labels Instead of Images
Flexible Dataset Distillation: Learn Labels Instead of Images
Ondrej Bohdal
Yongxin Yang
Timothy M. Hospedales
DD
85
110
0
15 Jun 2020
Global Attention Improves Graph Networks Generalization
Global Attention Improves Graph Networks Generalization
Omri Puny
Heli Ben-Hamu
Y. Lipman
52
22
0
14 Jun 2020
Coresets via Bilevel Optimization for Continual Learning and Streaming
Coresets via Bilevel Optimization for Continual Learning and Streaming
Zalan Borsos
Mojmír Mutný
Andreas Krause
CLL
80
239
0
06 Jun 2020
Open Graph Benchmark: Datasets for Machine Learning on Graphs
Open Graph Benchmark: Datasets for Machine Learning on Graphs
Weihua Hu
Matthias Fey
Marinka Zitnik
Yuxiao Dong
Hongyu Ren
Bowen Liu
Michele Catasta
J. Leskovec
309
2,752
0
02 May 2020
SIGN: Scalable Inception Graph Neural Networks
SIGN: Scalable Inception Graph Neural Networks
Fabrizio Frasca
Emanuele Rossi
D. Eynard
B. Chamberlain
M. Bronstein
Federico Monti
GNN
129
399
0
23 Apr 2020
NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture
  Search
NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search
Xuanyi Dong
Yi Yang
141
714
0
02 Jan 2020
Generative Teaching Networks: Accelerating Neural Architecture Search by
  Learning to Generate Synthetic Training Data
Generative Teaching Networks: Accelerating Neural Architecture Search by Learning to Generate Synthetic Training Data
F. Such
Aditya Rawal
Joel Lehman
Kenneth O. Stanley
Jeff Clune
DD
70
157
0
17 Dec 2019
Optimizing Millions of Hyperparameters by Implicit Differentiation
Optimizing Millions of Hyperparameters by Implicit Differentiation
Jonathan Lorraine
Paul Vicol
David Duvenaud
DD
128
416
0
06 Nov 2019
Diffusion Improves Graph Learning
Diffusion Improves Graph Learning
Johannes Klicpera
Stefan Weißenberger
Stephan Günnemann
GNN
155
712
0
28 Oct 2019
Searching for A Robust Neural Architecture in Four GPU Hours
Searching for A Robust Neural Architecture in Four GPU Hours
Xuanyi Dong
Yezhou Yang
133
656
0
10 Oct 2019
Understanding and Robustifying Differentiable Architecture Search
Understanding and Robustifying Differentiable Architecture Search
Arber Zela
T. Elsken
Tonmoy Saikia
Yassine Marrakchi
Thomas Brox
Frank Hutter
OODAAML
140
373
0
20 Sep 2019
GraphSAINT: Graph Sampling Based Inductive Learning Method
GraphSAINT: Graph Sampling Based Inductive Learning Method
Hanqing Zeng
Hongkuan Zhou
Ajitesh Srivastava
Rajgopal Kannan
Viktor Prasanna
GNN
137
969
0
10 Jul 2019
Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph
  Convolutional Networks
Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks
Wei-Lin Chiang
Xuanqing Liu
Si Si
Yang Li
Samy Bengio
Cho-Jui Hsieh
GNN
150
1,275
0
20 May 2019
GraphNAS: Graph Neural Architecture Search with Reinforcement Learning
GraphNAS: Graph Neural Architecture Search with Reinforcement Learning
Yang Gao
Hong Yang
Peng Zhang
Chuan Zhou
Yue Hu
AI4CEGNN
66
100
0
22 Apr 2019
Random Search and Reproducibility for Neural Architecture Search
Random Search and Reproducibility for Neural Architecture Search
Liam Li
Ameet Talwalkar
OOD
87
725
0
20 Feb 2019
SNAS: Stochastic Neural Architecture Search
SNAS: Stochastic Neural Architecture Search
Sirui Xie
Hehui Zheng
Chunxiao Liu
Liang Lin
87
938
0
24 Dec 2018
An Empirical Study of Example Forgetting during Deep Neural Network
  Learning
An Empirical Study of Example Forgetting during Deep Neural Network Learning
Mariya Toneva
Alessandro Sordoni
Rémi Tachet des Combes
Adam Trischler
Yoshua Bengio
Geoffrey J. Gordon
131
741
0
12 Dec 2018
Truncated Back-propagation for Bilevel Optimization
Truncated Back-propagation for Bilevel Optimization
Amirreza Shaban
Ching-An Cheng
Nathan Hatch
Byron Boots
101
266
0
25 Oct 2018
How Powerful are Graph Neural Networks?
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
257
7,705
0
01 Oct 2018
DARTS: Differentiable Architecture Search
DARTS: Differentiable Architecture Search
Hanxiao Liu
Karen Simonyan
Yiming Yang
206
4,368
0
24 Jun 2018
Spectrally approximating large graphs with smaller graphs
Spectrally approximating large graphs with smaller graphs
Andreas Loukas
P. Vandergheynst
58
106
0
21 Feb 2018
GraphVAE: Towards Generation of Small Graphs Using Variational
  Autoencoders
GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders
M. Simonovsky
N. Komodakis
GNNBDL
120
853
0
09 Feb 2018
Graph Attention Networks
Graph Attention Networks
Petar Velickovic
Guillem Cucurull
Arantxa Casanova
Adriana Romero
Pietro Lio
Yoshua Bengio
GNN
481
20,265
0
30 Oct 2017
Learning Transferable Architectures for Scalable Image Recognition
Learning Transferable Architectures for Scalable Image Recognition
Barret Zoph
Vijay Vasudevan
Jonathon Shlens
Quoc V. Le
186
5,608
0
21 Jul 2017
Inductive Representation Learning on Large Graphs
Inductive Representation Learning on Large Graphs
William L. Hamilton
Z. Ying
J. Leskovec
516
15,331
0
07 Jun 2017
iCaRL: Incremental Classifier and Representation Learning
iCaRL: Incremental Classifier and Representation Learning
Sylvestre-Alvise Rebuffi
Alexander Kolesnikov
G. Sperl
Christoph H. Lampert
CLLOOD
162
3,782
0
23 Nov 2016
Categorical Reparameterization with Gumbel-Softmax
Categorical Reparameterization with Gumbel-Softmax
Eric Jang
S. Gu
Ben Poole
BDL
363
5,388
0
03 Nov 2016
The Concrete Distribution: A Continuous Relaxation of Discrete Random
  Variables
The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables
Chris J. Maddison
A. Mnih
Yee Whye Teh
BDL
200
2,541
0
02 Nov 2016
Semi-Supervised Classification with Graph Convolutional Networks
Semi-Supervised Classification with Graph Convolutional Networks
Thomas Kipf
Max Welling
GNNSSL
671
29,183
0
09 Sep 2016
Convolutional Neural Networks on Graphs with Fast Localized Spectral
  Filtering
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
M. Defferrard
Xavier Bresson
P. Vandergheynst
GNN
365
7,681
0
30 Jun 2016
Scalable Gradient-Based Tuning of Continuous Regularization
  Hyperparameters
Scalable Gradient-Based Tuning of Continuous Regularization Hyperparameters
Jelena Luketina
Mathias Berglund
Klaus Greff
T. Raiko
65
174
0
20 Nov 2015
Optimizing Neural Networks with Kronecker-factored Approximate Curvature
Optimizing Neural Networks with Kronecker-factored Approximate Curvature
James Martens
Roger C. Grosse
ODL
109
1,024
0
19 Mar 2015
Super-Samples from Kernel Herding
Super-Samples from Kernel Herding
Yutian Chen
Max Welling
Alex Smola
167
342
0
15 Mar 2012
1