ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.16511
  4. Cited By
SE3Set: Harnessing equivariant hypergraph neural networks for molecular
  representation learning

SE3Set: Harnessing equivariant hypergraph neural networks for molecular representation learning

26 May 2024
Hongfei Wu
Lijun Wu
Guoqing Liu
Zhirong Liu
Bin Shao
Zun Wang
ArXivPDFHTML

Papers citing "SE3Set: Harnessing equivariant hypergraph neural networks for molecular representation learning"

3 / 3 papers shown
Title
Integrating Graph Neural Networks and Many-Body Expansion Theory for
  Potential Energy Surfaces
Integrating Graph Neural Networks and Many-Body Expansion Theory for Potential Energy Surfaces
Siqi Chen
Zhiqiang Wang
Xianqi Deng
Yili Shen
C. Ju
...
Lin Xiong
Guo Ling
Dieaa Alhmoud
Hui Guan
Zhou Lin
29
0
0
03 Nov 2024
Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic
  Graphs
Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic Graphs
Yi-Lun Liao
Tess E. Smidt
80
215
0
23 Jun 2022
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
203
1,238
0
08 Jan 2021
1