Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2405.15753
Cited By
Data Reconstruction: When You See It and When You Don't
24 May 2024
Edith Cohen
Haim Kaplan
Yishay Mansour
Shay Moran
Kobbi Nissim
Uri Stemmer
Eliad Tsfadia
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Data Reconstruction: When You See It and When You Don't"
25 / 25 papers shown
Title
Bounding data reconstruction attacks with the hypothesis testing interpretation of differential privacy
Georgios Kaissis
Jamie Hayes
Alexander Ziller
Daniel Rueckert
AAML
70
12
0
08 Jul 2023
Bounding Training Data Reconstruction in DP-SGD
Jamie Hayes
Saeed Mahloujifar
Borja Balle
AAML
FedML
52
40
0
14 Feb 2023
Information Theoretic Lower Bounds for Information Theoretic Upper Bounds
Roi Livni
61
16
0
09 Feb 2023
Extracting Training Data from Diffusion Models
Nicholas Carlini
Jamie Hayes
Milad Nasr
Matthew Jagielski
Vikash Sehwag
Florian Tramèr
Borja Balle
Daphne Ippolito
Eric Wallace
DiffM
121
606
0
30 Jan 2023
Towards Separating Computational and Statistical Differential Privacy
Badih Ghazi
Rahul Ilango
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
43
5
0
31 Dec 2022
Measuring Forgetting of Memorized Training Examples
Matthew Jagielski
Om Thakkar
Florian Tramèr
Daphne Ippolito
Katherine Lee
...
Eric Wallace
Shuang Song
Abhradeep Thakurta
Nicolas Papernot
Chiyuan Zhang
TDI
123
108
0
30 Jun 2022
Reconstructing Training Data from Trained Neural Networks
Niv Haim
Gal Vardi
Gilad Yehudai
Ohad Shamir
Michal Irani
73
138
0
15 Jun 2022
Strong Memory Lower Bounds for Learning Natural Models
Gavin Brown
Mark Bun
Adam D. Smith
61
12
0
09 Jun 2022
Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding
Chitwan Saharia
William Chan
Saurabh Saxena
Lala Li
Jay Whang
...
Raphael Gontijo-Lopes
Tim Salimans
Jonathan Ho
David J Fleet
Mohammad Norouzi
VLM
404
6,012
0
23 May 2022
Bounding Training Data Reconstruction in Private (Deep) Learning
Chuan Guo
Brian Karrer
Kamalika Chaudhuri
Laurens van der Maaten
125
54
0
28 Jan 2022
Reconstructing Training Data with Informed Adversaries
Borja Balle
Giovanni Cherubin
Jamie Hayes
MIACV
AAML
84
168
0
13 Jan 2022
Membership Inference Attacks From First Principles
Nicholas Carlini
Steve Chien
Milad Nasr
Shuang Song
Andreas Terzis
Florian Tramèr
MIACV
MIALM
66
694
0
07 Dec 2021
On the Importance of Difficulty Calibration in Membership Inference Attacks
Lauren Watson
Chuan Guo
Graham Cormode
Alex Sablayrolles
82
131
0
15 Nov 2021
On the Complexity of Two-Party Differential Privacy
Iftach Haitner
N. Mazor
Jad Silbak
Eliad Tsfadia
30
12
0
17 Aug 2021
Extracting Training Data from Large Language Models
Nicholas Carlini
Florian Tramèr
Eric Wallace
Matthew Jagielski
Ariel Herbert-Voss
...
Tom B. Brown
D. Song
Ulfar Erlingsson
Alina Oprea
Colin Raffel
MLAU
SILM
486
1,917
0
14 Dec 2020
When is Memorization of Irrelevant Training Data Necessary for High-Accuracy Learning?
Gavin Brown
Mark Bun
Vitaly Feldman
Adam D. Smith
Kunal Talwar
292
99
0
11 Dec 2020
What Neural Networks Memorize and Why: Discovering the Long Tail via Influence Estimation
Vitaly Feldman
Chiyuan Zhang
TDI
140
464
0
09 Aug 2020
Dreaming to Distill: Data-free Knowledge Transfer via DeepInversion
Hongxu Yin
Pavlo Molchanov
Zhizhong Li
J. Álvarez
Arun Mallya
Derek Hoiem
N. Jha
Jan Kautz
66
565
0
18 Dec 2019
White-box vs Black-box: Bayes Optimal Strategies for Membership Inference
Alexandre Sablayrolles
Matthijs Douze
Yann Ollivier
Cordelia Schmid
Hervé Jégou
MIACV
64
366
0
29 Aug 2019
Does Learning Require Memorization? A Short Tale about a Long Tail
Vitaly Feldman
TDI
123
494
0
12 Jun 2019
Towards Formalizing the GDPR's Notion of Singling Out
A. Cohen
Kobbi Nissim
61
84
0
12 Apr 2019
The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural Networks
Nicholas Carlini
Chang-rui Liu
Ulfar Erlingsson
Jernej Kos
D. Song
136
1,141
0
22 Feb 2018
Membership Inference Attacks against Machine Learning Models
Reza Shokri
M. Stronati
Congzheng Song
Vitaly Shmatikov
SLR
MIALM
MIACV
246
4,122
0
18 Oct 2016
Order-Revealing Encryption and the Hardness of Private Learning
Mark Bun
Mark Zhandry
FedML
44
34
0
03 May 2015
Distributed Private Data Analysis: On Simultaneously Solving How and What
A. Beimel
Kobbi Nissim
Eran Omri
FedML
108
207
0
14 Mar 2011
1