Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2405.15750
Cited By
Filtered Corpus Training (FiCT) Shows that Language Models can Generalize from Indirect Evidence
24 May 2024
Abhinav Patil
Jaap Jumelet
Yu Ying Chiu
Andy Lapastora
Peter Shen
Lexie Wang
Clevis Willrich
Shane Steinert-Threlkeld
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Filtered Corpus Training (FiCT) Shows that Language Models can Generalize from Indirect Evidence"
16 / 16 papers shown
Title
Both Direct and Indirect Evidence Contribute to Dative Alternation Preferences in Language Models
Qing Yao
Kanishka Misra
Leonie Weissweiler
Kyle Mahowald
45
0
0
26 Mar 2025
Do Construction Distributions Shape Formal Language Learning In German BabyLMs?
Bastian Bunzeck
Daniel Duran
Sina Zarrieß
43
0
0
14 Mar 2025
On the Acquisition of Shared Grammatical Representations in Bilingual Language Models
Catherine Arnett
Tyler A. Chang
J. Michaelov
Benjamin Bergen
41
0
0
05 Mar 2025
Can Language Models Learn Typologically Implausible Languages?
Tianyang Xu
Tatsuki Kuribayashi
Yohei Oseki
Ryan Cotterell
Alex Warstadt
73
1
0
17 Feb 2025
Generalizations across filler-gap dependencies in neural language models
Katherine Howitt
Sathvik Nair
Allison Dods
Robert Melvin Hopkins
AI4CE
20
2
0
23 Oct 2024
Can Language Models Induce Grammatical Knowledge from Indirect Evidence?
Miyu Oba
Yohei Oseki
Akiyo Fukatsu
Akari Haga
Hiroki Ouchi
Taro Watanabe
Saku Sugawara
32
1
0
08 Oct 2024
Generating novel experimental hypotheses from language models: A case study on cross-dative generalization
Kanishka Misra
Najoung Kim
29
3
0
09 Aug 2024
Testing learning hypotheses using neural networks by manipulating learning data
Cara Su-Yi Leong
Tal Linzen
23
4
0
05 Jul 2024
Black Big Boxes: Do Language Models Hide a Theory of Adjective Order?
Jaap Jumelet
Lisa Bylinina
Willem H. Zuidema
Jakub Szymanik
67
4
0
02 Jul 2024
Language Models Learn Rare Phenomena from Less Rare Phenomena: The Case of the Missing AANNs
Kanishka Misra
Kyle Mahowald
35
23
0
28 Mar 2024
Frequency Explains the Inverse Correlation of Large Language Models' Size, Training Data Amount, and Surprisal's Fit to Reading Times
Byung-Doh Oh
Shisen Yue
William Schuler
48
14
0
03 Feb 2024
Syntactic Surprisal From Neural Models Predicts, But Underestimates, Human Processing Difficulty From Syntactic Ambiguities
Suhas Arehalli
Brian Dillon
Tal Linzen
26
36
0
21 Oct 2022
State-of-the-art generalisation research in NLP: A taxonomy and review
Dieuwke Hupkes
Mario Giulianelli
Verna Dankers
Mikel Artetxe
Yanai Elazar
...
Leila Khalatbari
Maria Ryskina
Rita Frieske
Ryan Cotterell
Zhijing Jin
114
93
0
06 Oct 2022
Frequency Effects on Syntactic Rule Learning in Transformers
Jason W. Wei
Dan Garrette
Tal Linzen
Ellie Pavlick
82
62
0
14 Sep 2021
Stanza: A Python Natural Language Processing Toolkit for Many Human Languages
Peng Qi
Yuhao Zhang
Yuhui Zhang
Jason Bolton
Christopher D. Manning
AI4TS
199
1,653
0
16 Mar 2020
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
228
4,460
0
23 Jan 2020
1