Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2405.15458
Cited By
FedCal: Achieving Local and Global Calibration in Federated Learning via Aggregated Parameterized Scaler
24 May 2024
Hongyi Peng
Han Yu
Xiaoli Tang
Xiaoxiao Li
Re-assign community
ArXiv
PDF
HTML
Papers citing
"FedCal: Achieving Local and Global Calibration in Federated Learning via Aggregated Parameterized Scaler"
9 / 9 papers shown
Title
Future-Proofing Medical Imaging with Privacy-Preserving Federated Learning and Uncertainty Quantification: A Review
Nikolas Koutsoubis
Asim Waqas
Yasin Yilmaz
R. Ramachandran
M. Schabath
Ghulam Rasool
26
1
0
24 Sep 2024
Git Re-Basin: Merging Models modulo Permutation Symmetries
Samuel K. Ainsworth
J. Hayase
S. Srinivasa
MoMe
252
313
0
11 Sep 2022
Learn then Test: Calibrating Predictive Algorithms to Achieve Risk Control
Anastasios Nikolas Angelopoulos
Stephen Bates
Emmanuel J. Candès
Michael I. Jordan
Lihua Lei
97
125
0
03 Oct 2021
Towards Personalized Federated Learning
A. Tan
Han Yu
Li-zhen Cui
Qiang Yang
FedML
AI4CE
209
840
0
01 Mar 2021
Privacy and Robustness in Federated Learning: Attacks and Defenses
Lingjuan Lyu
Han Yu
Xingjun Ma
Chen Chen
Lichao Sun
Jun Zhao
Qiang Yang
Philip S. Yu
FedML
180
355
0
07 Dec 2020
SDE-Net: Equipping Deep Neural Networks with Uncertainty Estimates
Lingkai Kong
Jimeng Sun
Chao Zhang
UQCV
44
103
0
24 Aug 2020
Adaptive Personalized Federated Learning
Yuyang Deng
Mohammad Mahdi Kamani
M. Mahdavi
FedML
212
542
0
30 Mar 2020
The Future of Digital Health with Federated Learning
Nicola Rieke
Jonny Hancox
Wenqi Li
Fausto Milletari
H. Roth
...
Ronald M. Summers
Andrew Trask
Daguang Xu
Maximilian Baust
M. Jorge Cardoso
OOD
174
1,705
0
18 Mar 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
270
5,660
0
05 Dec 2016
1