Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2405.15282
Cited By
Prompt Tuning Strikes Back: Customizing Foundation Models with Low-Rank Prompt Adaptation
24 May 2024
Abhinav C. P. Jain
Swarat Chaudhuri
Thomas W. Reps
Christopher M. Jermaine
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Prompt Tuning Strikes Back: Customizing Foundation Models with Low-Rank Prompt Adaptation"
6 / 6 papers shown
Title
Parameter-Efficient Fine-Tuning for Large Models: A Comprehensive Survey
Zeyu Han
Chao Gao
Jinyang Liu
Jeff Zhang
Sai Qian Zhang
150
310
0
21 Mar 2024
P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks
Xiao Liu
Kaixuan Ji
Yicheng Fu
Weng Lam Tam
Zhengxiao Du
Zhilin Yang
Jie Tang
VLM
238
806
0
14 Oct 2021
The Power of Scale for Parameter-Efficient Prompt Tuning
Brian Lester
Rami Al-Rfou
Noah Constant
VPVLM
280
3,848
0
18 Apr 2021
Beyond Fully-Connected Layers with Quaternions: Parameterization of Hypercomplex Multiplications with
1
/
n
1/n
1/
n
Parameters
Aston Zhang
Yi Tay
Shuai Zhang
Alvin Chan
A. Luu
S. Hui
Jie Fu
MQ
182
83
0
17 Feb 2021
WARP: Word-level Adversarial ReProgramming
Karen Hambardzumyan
Hrant Khachatrian
Jonathan May
AAML
254
342
0
01 Jan 2021
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
Alex Jinpeng Wang
Amanpreet Singh
Julian Michael
Felix Hill
Omer Levy
Samuel R. Bowman
ELM
297
6,959
0
20 Apr 2018
1