Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2405.14457
Cited By
Tighter Privacy Auditing of DP-SGD in the Hidden State Threat Model
23 May 2024
Tudor Cebere
A. Bellet
Nicolas Papernot
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Tighter Privacy Auditing of DP-SGD in the Hidden State Threat Model"
42 / 42 papers shown
Title
Empirical Privacy Variance
Yuzheng Hu
Fan Wu
Ruicheng Xian
Yuhang Liu
Lydia Zakynthinou
Pritish Kamath
Chiyuan Zhang
David A. Forsyth
85
0
0
16 Mar 2025
Adversarial Sample-Based Approach for Tighter Privacy Auditing in Final Model-Only Scenarios
Sangyeon Yoon
Wonje Jeung
Albert No
121
0
0
02 Dec 2024
Data Deletion for Linear Regression with Noisy SGD
Zhangjie Xia
Chi-Hua Wang
Guang Cheng
79
2
0
12 Oct 2024
The Last Iterate Advantage: Empirical Auditing and Principled Heuristic Analysis of Differentially Private SGD
Thomas Steinke
Milad Nasr
Arun Ganesh
Borja Balle
Christopher A. Choquette-Choo
Matthew Jagielski
Jamie Hayes
Abhradeep Thakurta
Adam Smith
Andreas Terzis
82
7
0
08 Oct 2024
It's Our Loss: No Privacy Amplification for Hidden State DP-SGD With Non-Convex Loss
Meenatchi Sundaram Muthu Selva Annamalai
61
8
0
09 Jul 2024
Nearly Tight Black-Box Auditing of Differentially Private Machine Learning
Meenatchi Sundaram Muthu Selva Annamalai
Emiliano De Cristofaro
75
12
0
23 May 2024
Privacy Backdoors: Stealing Data with Corrupted Pretrained Models
Shanglun Feng
Florian Tramèr
SILM
75
16
0
30 Mar 2024
Shifted Interpolation for Differential Privacy
Jinho Bok
Weijie Su
Jason M. Altschuler
85
9
0
01 Mar 2024
Unified Enhancement of Privacy Bounds for Mixture Mechanisms via
f
f
f
-Differential Privacy
Chendi Wang
Buxin Su
Jiayuan Ye
Reza Shokri
Weijie J. Su
FedML
52
11
0
30 Oct 2023
Privacy Loss of Noisy Stochastic Gradient Descent Might Converge Even for Non-Convex Losses
S. Asoodeh
Mario Díaz
46
6
0
17 May 2023
Privacy Auditing with One (1) Training Run
Thomas Steinke
Milad Nasr
Matthew Jagielski
88
79
0
15 May 2023
Tight Auditing of Differentially Private Machine Learning
Milad Nasr
Jamie Hayes
Thomas Steinke
Borja Balle
Florian Tramèr
Matthew Jagielski
Nicholas Carlini
Andreas Terzis
FedML
51
50
0
15 Feb 2023
One-shot Empirical Privacy Estimation for Federated Learning
Galen Andrew
Peter Kairouz
Sewoong Oh
Alina Oprea
H. B. McMahan
Vinith Suriyakumar
FedML
79
35
0
06 Feb 2023
A General Framework for Auditing Differentially Private Machine Learning
Fred Lu
Joseph Munoz
Maya Fuchs
Tyler LeBlond
Elliott Zaresky-Williams
Edward Raff
Francis Ferraro
Brian Testa
FedML
34
36
0
16 Oct 2022
CANIFE: Crafting Canaries for Empirical Privacy Measurement in Federated Learning
Samuel Maddock
Alexandre Sablayrolles
Pierre Stock
FedML
100
22
0
06 Oct 2022
Connect the Dots: Tighter Discrete Approximations of Privacy Loss Distributions
Vadym Doroshenko
Badih Ghazi
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
46
41
0
10 Jul 2022
Reconstructing Training Data from Trained Neural Networks
Niv Haim
Gal Vardi
Gilad Yehudai
Ohad Shamir
Michal Irani
56
134
0
15 Jun 2022
Privacy of Noisy Stochastic Gradient Descent: More Iterations without More Privacy Loss
Jason M. Altschuler
Kunal Talwar
FedML
87
57
0
27 May 2022
Unlocking High-Accuracy Differentially Private Image Classification through Scale
Soham De
Leonard Berrada
Jamie Hayes
Samuel L. Smith
Borja Balle
66
223
0
28 Apr 2022
Differentially Private Learning Needs Hidden State (Or Much Faster Convergence)
Jiayuan Ye
Reza Shokri
FedML
66
44
0
10 Mar 2022
Reconstructing Training Data with Informed Adversaries
Borja Balle
Giovanni Cherubin
Jamie Hayes
MIACV
AAML
77
162
0
13 Jan 2022
Membership Inference Attacks From First Principles
Nicholas Carlini
Steve Chien
Milad Nasr
Shuang Song
Andreas Terzis
Florian Tramèr
MIACV
MIALM
46
663
0
07 Dec 2021
Opacus: User-Friendly Differential Privacy Library in PyTorch
Ashkan Yousefpour
I. Shilov
Alexandre Sablayrolles
Davide Testuggine
Karthik Prasad
...
Sayan Gosh
Akash Bharadwaj
Jessica Zhao
Graham Cormode
Ilya Mironov
VLM
219
357
0
25 Sep 2021
Adaptive Machine Unlearning
Varun Gupta
Christopher Jung
Seth Neel
Aaron Roth
Saeed Sharifi-Malvajerdi
Chris Waites
MU
53
177
0
08 Jun 2021
Numerical Composition of Differential Privacy
Sivakanth Gopi
Y. Lee
Lukas Wutschitz
44
176
0
05 Jun 2021
Achieving Linear Speedup with Partial Worker Participation in Non-IID Federated Learning
Haibo Yang
Minghong Fang
Jia Liu
FedML
50
256
0
27 Jan 2021
Adversary Instantiation: Lower Bounds for Differentially Private Machine Learning
Milad Nasr
Shuang Song
Abhradeep Thakurta
Nicolas Papernot
Nicholas Carlini
MIACV
FedML
105
219
0
11 Jan 2021
Privacy Amplification by Decentralization
Edwige Cyffers
A. Bellet
FedML
87
40
0
09 Dec 2020
Descent-to-Delete: Gradient-Based Methods for Machine Unlearning
Seth Neel
Aaron Roth
Saeed Sharifi-Malvajerdi
MU
45
264
0
06 Jul 2020
Auditing Differentially Private Machine Learning: How Private is Private SGD?
Matthew Jagielski
Jonathan R. Ullman
Alina Oprea
FedML
53
240
0
13 Jun 2020
Machine Unlearning
Lucas Bourtoule
Varun Chandrasekaran
Christopher A. Choquette-Choo
Hengrui Jia
Adelin Travers
Baiwu Zhang
David Lie
Nicolas Papernot
MU
103
830
0
09 Dec 2019
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
300
42,038
0
03 Dec 2019
Certified Data Removal from Machine Learning Models
Chuan Guo
Tom Goldstein
Awni Y. Hannun
Laurens van der Maaten
MU
77
434
0
08 Nov 2019
Privacy Amplification by Mixing and Diffusion Mechanisms
Borja Balle
Gilles Barthe
Marco Gaboardi
J. Geumlek
26
41
0
29 May 2019
Amplification by Shuffling: From Local to Central Differential Privacy via Anonymity
Ulfar Erlingsson
Vitaly Feldman
Ilya Mironov
A. Raghunathan
Kunal Talwar
Abhradeep Thakurta
170
423
0
29 Nov 2018
Privacy Amplification by Iteration
Vitaly Feldman
Ilya Mironov
Kunal Talwar
Abhradeep Thakurta
FedML
50
171
0
20 Aug 2018
Membership Inference Attacks against Machine Learning Models
Reza Shokri
M. Stronati
Congzheng Song
Vitaly Shmatikov
SLR
MIALM
MIACV
216
4,075
0
18 Oct 2016
Deep Learning with Differential Privacy
Martín Abadi
Andy Chu
Ian Goodfellow
H. B. McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
FedML
SyDa
170
6,069
0
01 Jul 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.5K
192,638
0
10 Dec 2015
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
VLM
215
18,534
0
06 Feb 2015
The Composition Theorem for Differential Privacy
Peter Kairouz
Sewoong Oh
Pramod Viswanath
93
677
0
04 Nov 2013
What Can We Learn Privately?
S. Kasiviswanathan
Homin K. Lee
Kobbi Nissim
Sofya Raskhodnikova
Adam D. Smith
99
1,459
0
06 Mar 2008
1