ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.14347
  4. Cited By
Doubly-Dynamic ISAC Precoding for Vehicular Networks: A Constrained Deep
  Reinforcement Learning (CDRL) Approach
v1v2 (latest)

Doubly-Dynamic ISAC Precoding for Vehicular Networks: A Constrained Deep Reinforcement Learning (CDRL) Approach

23 May 2024
Zonghui Yang
Shijian Gao
Xiang Cheng
ArXiv (abs)PDFHTML

Papers citing "Doubly-Dynamic ISAC Precoding for Vehicular Networks: A Constrained Deep Reinforcement Learning (CDRL) Approach"

1 / 1 papers shown
Title
Synesthesia of Machines (SoM)-Enhanced ISAC Precoding for Vehicular
  Networks with Double Dynamics
Synesthesia of Machines (SoM)-Enhanced ISAC Precoding for Vehicular Networks with Double Dynamics
Zonghui Yang
Shijian Gao
Xiang Cheng
Liuqing Yang
22
2
0
24 Aug 2024
1