ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.14253
  4. Cited By
Higher-Rank Irreducible Cartesian Tensors for Equivariant Message
  Passing

Higher-Rank Irreducible Cartesian Tensors for Equivariant Message Passing

23 May 2024
Viktor Zaverkin
Francesco Alesiani
Takashi Maruyama
Federico Errica
Henrik Christiansen
Makoto Takamoto
Nicolas Weber
Mathias Niepert
ArXivPDFHTML

Papers citing "Higher-Rank Irreducible Cartesian Tensors for Equivariant Message Passing"

8 / 8 papers shown
Title
Quantifying Robustness: A Benchmarking Framework for Deep Learning Forecasting in Cyber-Physical Systems
Quantifying Robustness: A Benchmarking Framework for Deep Learning Forecasting in Cyber-Physical Systems
Alexander Windmann
Henrik S. Steude
Daniel Boschmann
Oliver Niggemann
OOD
AI4TS
33
0
0
04 Apr 2025
Fast, Modular, and Differentiable Framework for Machine Learning-Enhanced Molecular Simulations
Fast, Modular, and Differentiable Framework for Machine Learning-Enhanced Molecular Simulations
H. Christiansen
Takashi Maruyama
Federico Errica
Viktor Zaverkin
M. Takamoto
Francesco Alesiani
75
0
0
26 Mar 2025
Geometric Kolmogorov-Arnold Superposition Theorem
Francesco Alesiani
Takashi Maruyama
H. Christiansen
Viktor Zaverkin
57
0
0
23 Feb 2025
Position: Graph Learning Will Lose Relevance Due To Poor Benchmarks
Position: Graph Learning Will Lose Relevance Due To Poor Benchmarks
Maya Bechler-Speicher
Ben Finkelshtein
Fabrizio Frasca
Luis Muller
Jan Tonshoff
...
Michael M. Bronstein
Mathias Niepert
Bryan Perozzi
Mikhail Galkin
Christopher Morris
OOD
97
2
0
21 Feb 2025
Structure-Aware E(3)-Invariant Molecular Conformer Aggregation Networks
Structure-Aware E(3)-Invariant Molecular Conformer Aggregation Networks
D. M. Nguyen
Nina Lukashina
Tai Nguyen
An T. Le
TrungTin Nguyen
Nhat Ho
Jan Peters
Daniel Sonntag
Viktor Zaverkin
Mathias Niepert
33
5
0
03 Feb 2024
Gaussian Moments as Physically Inspired Molecular Descriptors for
  Accurate and Scalable Machine Learning Potentials
Gaussian Moments as Physically Inspired Molecular Descriptors for Accurate and Scalable Machine Learning Potentials
Viktor Zaverkin
Johannes Kastner
34
67
0
15 Sep 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
203
1,238
0
08 Jan 2021
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
247
3,236
0
24 Nov 2016
1