ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.13846
  4. Cited By
Regression Trees Know Calculus

Regression Trees Know Calculus

22 May 2024
Nathan Wycoff
ArXivPDFHTML

Papers citing "Regression Trees Know Calculus"

16 / 16 papers shown
Title
Physics-informed neural networks (PINNs) for fluid mechanics: A review
Physics-informed neural networks (PINNs) for fluid mechanics: A review
Shengze Cai
Zhiping Mao
Zhicheng Wang
Minglang Yin
George Karniadakis
PINN
AI4CE
34
1,152
0
20 May 2021
Nonparametric Variable Screening with Optimal Decision Stumps
Nonparametric Variable Screening with Optimal Decision Stumps
Jason M. Klusowski
Peter M. Tian
46
4
0
05 Nov 2020
True to the Model or True to the Data?
True to the Model or True to the Data?
Hugh Chen
Joseph D. Janizek
Scott M. Lundberg
Su-In Lee
TDI
FAtt
88
166
0
29 Jun 2020
Sequential Learning of Active Subspaces
Sequential Learning of Active Subspaces
Nathan Wycoff
M. Binois
Stefan M. Wild
19
29
0
26 Jul 2019
A Debiased MDI Feature Importance Measure for Random Forests
A Debiased MDI Feature Importance Measure for Random Forests
Xiao Li
Yu Wang
Sumanta Basu
Karl Kumbier
Bin Yu
146
82
0
26 Jun 2019
Explainable AI for Trees: From Local Explanations to Global
  Understanding
Explainable AI for Trees: From Local Explanations to Global Understanding
Scott M. Lundberg
G. Erion
Hugh Chen
A. DeGrave
J. Prutkin
B. Nair
R. Katz
J. Himmelfarb
N. Bansal
Su-In Lee
FAtt
86
286
0
11 May 2019
Unrestricted Permutation forces Extrapolation: Variable Importance
  Requires at least One More Model, or There Is No Free Variable Importance
Unrestricted Permutation forces Extrapolation: Variable Importance Requires at least One More Model, or There Is No Free Variable Importance
Giles Hooker
L. Mentch
Siyu Zhou
55
156
0
01 May 2019
Deep active subspaces - a scalable method for high-dimensional
  uncertainty propagation
Deep active subspaces - a scalable method for high-dimensional uncertainty propagation
Rohit Tripathy
Ilias Bilionis
33
12
0
27 Feb 2019
Using Attribution to Decode Dataset Bias in Neural Network Models for
  Chemistry
Using Attribution to Decode Dataset Bias in Neural Network Models for Chemistry
Kevin McCloskey
Ankur Taly
Federico Monti
M. Brenner
Lucy J. Colwell
40
85
0
27 Nov 2018
Deep Learning of Vortex Induced Vibrations
Deep Learning of Vortex Induced Vibrations
M. Raissi
Zhicheng Wang
M. Triantafyllou
George Karniadakis
AI4CE
36
373
0
26 Aug 2018
A Unified Approach to Interpreting Model Predictions
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
538
21,613
0
22 May 2017
Axiomatic Attribution for Deep Networks
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
115
5,920
0
04 Mar 2017
Machine Learning of Linear Differential Equations using Gaussian
  Processes
Machine Learning of Linear Differential Equations using Gaussian Processes
M. Raissi
George Karniadakis
46
544
0
10 Jan 2017
Interpretation of Prediction Models Using the Input Gradient
Interpretation of Prediction Models Using the Input Gradient
Yotam Hechtlinger
FaML
AI4CE
FAtt
32
85
0
23 Nov 2016
Understanding Random Forests: From Theory to Practice
Understanding Random Forests: From Theory to Practice
Gilles Louppe
75
739
0
28 Jul 2014
Variable importance in binary regression trees and forests
Variable importance in binary regression trees and forests
H. Ishwaran
147
385
0
15 Nov 2007
1