ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.12563
  4. Cited By
NV-LIO: LiDAR-Inertial Odometry using Normal Vectors Towards Robust SLAM
  in Multifloor Environments

NV-LIO: LiDAR-Inertial Odometry using Normal Vectors Towards Robust SLAM in Multifloor Environments

21 May 2024
Dongha Chung
Jinwhan Kim
ArXivPDFHTML

Papers citing "NV-LIO: LiDAR-Inertial Odometry using Normal Vectors Towards Robust SLAM in Multifloor Environments"

3 / 3 papers shown
Title
G-Loc: Tightly-coupled Graph Localization with Prior Topo-metric
  Information
G-Loc: Tightly-coupled Graph Localization with Prior Topo-metric Information
Lorenzo Montano-Oliván
Julio A. Placed
Luis Montano
María T. Lázaro
27
2
0
08 May 2024
FAST-LIO: A Fast, Robust LiDAR-inertial Odometry Package by
  Tightly-Coupled Iterated Kalman Filter
FAST-LIO: A Fast, Robust LiDAR-inertial Odometry Package by Tightly-Coupled Iterated Kalman Filter
Wenyuan Xu
Fu Zhang
66
601
0
16 Oct 2020
The Newer College Dataset: Handheld LiDAR, Inertial and Vision with
  Ground Truth
The Newer College Dataset: Handheld LiDAR, Inertial and Vision with Ground Truth
Milad Ramezani
Yiduo Wang
Marco Camurri
David Wisth
Matías Mattamala
Maurice F. Fallon
3DV
70
189
0
12 Mar 2020
1