ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.11756
  4. Cited By
Erasing the Bias: Fine-Tuning Foundation Models for Semi-Supervised
  Learning

Erasing the Bias: Fine-Tuning Foundation Models for Semi-Supervised Learning

20 May 2024
Kai Gan
Tong Wei
ArXivPDFHTML

Papers citing "Erasing the Bias: Fine-Tuning Foundation Models for Semi-Supervised Learning"

9 / 9 papers shown
Title
Browsing without Third-Party Cookies: What Do You See?
Browsing without Third-Party Cookies: What Do You See?
Maxwell Lin
Shihan Lin
Helen Wu
Karen Wang
Xiaowei Yang
BDL
56
0
0
14 Oct 2024
Facing the Elephant in the Room: Visual Prompt Tuning or Full
  Finetuning?
Facing the Elephant in the Room: Visual Prompt Tuning or Full Finetuning?
Cheng Han
Qifan Wang
Yiming Cui
Wenguan Wang
Lifu Huang
Siyuan Qi
Dongfang Liu
VLM
49
19
0
23 Jan 2024
Parameter-Efficient Tuning Makes a Good Classification Head
Parameter-Efficient Tuning Makes a Good Classification Head
Zhuoyi Yang
Ming Ding
Yanhui Guo
Qingsong Lv
Jie Tang
VLM
40
14
0
30 Oct 2022
AdaptFormer: Adapting Vision Transformers for Scalable Visual
  Recognition
AdaptFormer: Adapting Vision Transformers for Scalable Visual Recognition
Shoufa Chen
Chongjian Ge
Zhan Tong
Jiangliu Wang
Yibing Song
Jue Wang
Ping Luo
146
638
0
26 May 2022
FreeMatch: Self-adaptive Thresholding for Semi-supervised Learning
FreeMatch: Self-adaptive Thresholding for Semi-supervised Learning
Yidong Wang
Hao Chen
Qiang Heng
Wenxin Hou
Yue Fan
...
Marios Savvides
T. Shinozaki
Bhiksha Raj
Bernt Schiele
Xing Xie
185
258
0
15 May 2022
FlexMatch: Boosting Semi-Supervised Learning with Curriculum Pseudo
  Labeling
FlexMatch: Boosting Semi-Supervised Learning with Curriculum Pseudo Labeling
Bowen Zhang
Yidong Wang
Wenxin Hou
Hao Wu
Jindong Wang
Manabu Okumura
T. Shinozaki
AAML
252
862
0
15 Oct 2021
Learning to Prompt for Vision-Language Models
Learning to Prompt for Vision-Language Models
Kaiyang Zhou
Jingkang Yang
Chen Change Loy
Ziwei Liu
VPVLM
CLIP
VLM
345
2,271
0
02 Sep 2021
Scaling Up Visual and Vision-Language Representation Learning With Noisy
  Text Supervision
Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision
Chao Jia
Yinfei Yang
Ye Xia
Yi-Ting Chen
Zarana Parekh
Hieu H. Pham
Quoc V. Le
Yun-hsuan Sung
Zhen Li
Tom Duerig
VLM
CLIP
304
3,708
0
11 Feb 2021
In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label
  Selection Framework for Semi-Supervised Learning
In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label Selection Framework for Semi-Supervised Learning
Mamshad Nayeem Rizve
Kevin Duarte
Y. S. Rawat
M. Shah
238
509
0
15 Jan 2021
1