Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2405.11667
Cited By
The Limits and Potentials of Local SGD for Distributed Heterogeneous Learning with Intermittent Communication
19 May 2024
Kumar Kshitij Patel
Margalit Glasgow
Ali Zindari
Lingxiao Wang
Sebastian U. Stich
Ziheng Cheng
Nirmit Joshi
Nathan Srebro
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"The Limits and Potentials of Local SGD for Distributed Heterogeneous Learning with Intermittent Communication"
24 / 24 papers shown
Title
Revisiting LocalSGD and SCAFFOLD: Improved Rates and Missing Analysis
Ruichen Luo
Sebastian U Stich
Samuel Horváth
Martin Takáč
116
0
0
08 Jan 2025
FedExP: Speeding Up Federated Averaging via Extrapolation
Divyansh Jhunjhunwala
Shiqiang Wang
Gauri Joshi
FedML
57
61
0
23 Jan 2023
On-Demand Sampling: Learning Optimally from Multiple Distributions
Nika Haghtalab
Michael I. Jordan
Eric Zhao
FedML
118
36
0
22 Oct 2022
On the Unreasonable Effectiveness of Federated Averaging with Heterogeneous Data
Jianyu Wang
Rudrajit Das
Gauri Joshi
Satyen Kale
Zheng Xu
Tong Zhang
FedML
82
40
0
09 Jun 2022
A Stochastic Newton Algorithm for Distributed Convex Optimization
Brian Bullins
Kumar Kshitij Patel
Ohad Shamir
Nathan Srebro
Blake E. Woodworth
62
16
0
07 Oct 2021
FedChain: Chained Algorithms for Near-Optimal Communication Cost in Federated Learning
Charlie Hou
K. K. Thekumparampil
Giulia Fanti
Sewoong Oh
FedML
66
14
0
16 Aug 2021
A Field Guide to Federated Optimization
Jianyu Wang
Zachary B. Charles
Zheng Xu
Gauri Joshi
H. B. McMahan
...
Mi Zhang
Tong Zhang
Chunxiang Zheng
Chen Zhu
Wennan Zhu
FedML
273
421
0
14 Jul 2021
STEM: A Stochastic Two-Sided Momentum Algorithm Achieving Near-Optimal Sample and Communication Complexities for Federated Learning
Prashant Khanduri
Pranay Sharma
Haibo Yang
Min-Fong Hong
Jia Liu
K. Rajawat
P. Varshney
FedML
56
63
0
19 Jun 2021
On Large-Cohort Training for Federated Learning
Zachary B. Charles
Zachary Garrett
Zhouyuan Huo
Sergei Shmulyian
Virginia Smith
FedML
66
112
0
15 Jun 2021
The Min-Max Complexity of Distributed Stochastic Convex Optimization with Intermittent Communication
Blake E. Woodworth
Brian Bullins
Ohad Shamir
Nathan Srebro
38
49
0
02 Feb 2021
Mime: Mimicking Centralized Stochastic Algorithms in Federated Learning
Sai Praneeth Karimireddy
Martin Jaggi
Satyen Kale
M. Mohri
Sashank J. Reddi
Sebastian U. Stich
A. Suresh
FedML
136
217
0
08 Aug 2020
On the Outsized Importance of Learning Rates in Local Update Methods
Zachary B. Charles
Jakub Konecný
FedML
78
54
0
02 Jul 2020
Federated Accelerated Stochastic Gradient Descent
Honglin Yuan
Tengyu Ma
FedML
73
180
0
16 Jun 2020
FedSplit: An algorithmic framework for fast federated optimization
Reese Pathak
Martin J. Wainwright
FedML
217
184
0
11 May 2020
A Unified Theory of Decentralized SGD with Changing Topology and Local Updates
Anastasia Koloskova
Nicolas Loizou
Sadra Boreiri
Martin Jaggi
Sebastian U. Stich
FedML
85
514
0
23 Mar 2020
Is Local SGD Better than Minibatch SGD?
Blake E. Woodworth
Kumar Kshitij Patel
Sebastian U. Stich
Zhen Dai
Brian Bullins
H. B. McMahan
Ohad Shamir
Nathan Srebro
FedML
74
254
0
18 Feb 2020
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedML
AI4CE
266
6,285
0
10 Dec 2019
Stochastic Newton and Cubic Newton Methods with Simple Local Linear-Quadratic Rates
D. Kovalev
Konstantin Mishchenko
Peter Richtárik
ODL
60
45
0
03 Dec 2019
Tighter Theory for Local SGD on Identical and Heterogeneous Data
Ahmed Khaled
Konstantin Mishchenko
Peter Richtárik
74
435
0
10 Sep 2019
Introduction to Online Convex Optimization
Elad Hazan
OffRL
188
1,939
0
07 Sep 2019
Unified Optimal Analysis of the (Stochastic) Gradient Method
Sebastian U. Stich
54
113
0
09 Jul 2019
Don't Use Large Mini-Batches, Use Local SGD
Tao R. Lin
Sebastian U. Stich
Kumar Kshitij Patel
Martin Jaggi
119
432
0
22 Aug 2018
Local SGD Converges Fast and Communicates Little
Sebastian U. Stich
FedML
187
1,069
0
24 May 2018
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
408
17,593
0
17 Feb 2016
1