Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2405.10376
Cited By
Dealing Doubt: Unveiling Threat Models in Gradient Inversion Attacks under Federated Learning, A Survey and Taxonomy
16 May 2024
Yichuan Shi
Olivera Kotevska
Viktor Reshniak
Abhishek Singh
Ramesh Raskar
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Dealing Doubt: Unveiling Threat Models in Gradient Inversion Attacks under Federated Learning, A Survey and Taxonomy"
18 / 18 papers shown
Title
Client-side Gradient Inversion Against Federated Learning from Poisoning
Jiaheng Wei
Yanjun Zhang
Leo Yu Zhang
Chao Chen
Shirui Pan
Kok-Leong Ong
Jinchao Zhang
Yang Xiang
AAML
51
3
0
14 Sep 2023
An Experimental Study of Byzantine-Robust Aggregation Schemes in Federated Learning
Shenghui Li
Edith C.H. Ngai
Thiemo Voigt
FedML
AAML
45
56
0
14 Feb 2023
Cocktail Party Attack: Breaking Aggregation-Based Privacy in Federated Learning using Independent Component Analysis
Sanjay Kariyappa
Chuan Guo
Kiwan Maeng
Wenjie Xiong
G. E. Suh
Moinuddin K. Qureshi
Hsien-Hsin S. Lee
FedML
74
29
0
12 Sep 2022
Recovering Private Text in Federated Learning of Language Models
Samyak Gupta
Yangsibo Huang
Zexuan Zhong
Tianyu Gao
Kai Li
Danqi Chen
FedML
63
78
0
17 May 2022
Fishing for User Data in Large-Batch Federated Learning via Gradient Magnification
Yuxin Wen
Jonas Geiping
Liam H. Fowl
Micah Goldblum
Tom Goldstein
FedML
168
96
0
01 Feb 2022
When the Curious Abandon Honesty: Federated Learning Is Not Private
Franziska Boenisch
Adam Dziedzic
R. Schuster
Ali Shahin Shamsabadi
Ilia Shumailov
Nicolas Papernot
FedML
AAML
95
184
0
06 Dec 2021
Understanding Training-Data Leakage from Gradients in Neural Networks for Image Classification
Cangxiong Chen
Neill D. F. Campbell
FedML
44
24
0
19 Nov 2021
Gradient Disaggregation: Breaking Privacy in Federated Learning by Reconstructing the User Participant Matrix
Maximilian Lam
Gu-Yeon Wei
David Brooks
Vijay Janapa Reddi
Michael Mitzenmacher
FedML
75
64
0
10 Jun 2021
R-GAP: Recursive Gradient Attack on Privacy
Junyi Zhu
Matthew Blaschko
FedML
54
136
0
15 Oct 2020
InstaHide: Instance-hiding Schemes for Private Distributed Learning
Yangsibo Huang
Zhao Song
Keqin Li
Sanjeev Arora
FedML
PICV
72
152
0
06 Oct 2020
Federated Learning with Compression: Unified Analysis and Sharp Guarantees
Farzin Haddadpour
Mohammad Mahdi Kamani
Aryan Mokhtari
M. Mahdavi
FedML
71
277
0
02 Jul 2020
Inverting Gradients -- How easy is it to break privacy in federated learning?
Jonas Geiping
Hartmut Bauermeister
Hannah Dröge
Michael Moeller
FedML
98
1,223
0
31 Mar 2020
A Theory of Usable Information Under Computational Constraints
Yilun Xu
Shengjia Zhao
Jiaming Song
Russell Stewart
Stefano Ermon
70
173
0
25 Feb 2020
Federated Learning with Differential Privacy: Algorithms and Performance Analysis
Kang Wei
Jun Li
Ming Ding
Chuan Ma
Heng Yang
Farokhi Farhad
Shi Jin
Tony Q.S. Quek
H. Vincent Poor
FedML
110
1,612
0
01 Nov 2019
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric
Richard Y. Zhang
Phillip Isola
Alexei A. Efros
Eli Shechtman
Oliver Wang
EGVM
355
11,784
0
11 Jan 2018
Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning
Briland Hitaj
G. Ateniese
Fernando Perez-Cruz
FedML
113
1,401
0
24 Feb 2017
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
392
17,453
0
17 Feb 2016
Federated Optimization:Distributed Optimization Beyond the Datacenter
Jakub Konecný
H. B. McMahan
Daniel Ramage
FedML
113
737
0
11 Nov 2015
1