ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.09933
  4. Cited By
MiniMaxAD: A Lightweight Autoencoder for Feature-Rich Anomaly Detection

MiniMaxAD: A Lightweight Autoencoder for Feature-Rich Anomaly Detection

16 May 2024
Feng Wang
Chengming Liu
Lei Shi
Haibo Pang
ArXivPDFHTML

Papers citing "MiniMaxAD: A Lightweight Autoencoder for Feature-Rich Anomaly Detection"

8 / 8 papers shown
Title
Real-IAD: A Real-World Multi-View Dataset for Benchmarking Versatile
  Industrial Anomaly Detection
Real-IAD: A Real-World Multi-View Dataset for Benchmarking Versatile Industrial Anomaly Detection
Chengjie Wang
Wenbing Zhu
Bin-Bin Gao
Zhenye Gan
Jianning Zhang
Zhihao Gu
Shuguang Qian
Mingang Chen
Lizhuang Ma
75
49
0
19 Mar 2024
PKU-GoodsAD: A Supermarket Goods Dataset for Unsupervised Anomaly
  Detection and Segmentation
PKU-GoodsAD: A Supermarket Goods Dataset for Unsupervised Anomaly Detection and Segmentation
Jian Zhang
Runwei Ding
Miaoju Ban
Linhui Dai
35
13
0
11 Jul 2023
CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via
  Conditional Normalizing Flows
CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows
Denis A. Gudovskiy
Shun Ishizaka
Kazuki Kozuka
54
400
0
27 Jul 2021
RepVGG: Making VGG-style ConvNets Great Again
RepVGG: Making VGG-style ConvNets Great Again
Xiaohan Ding
Xinming Zhang
Ningning Ma
Jungong Han
Guiguang Ding
Jian Sun
200
1,567
0
11 Jan 2021
Towards Visually Explaining Variational Autoencoders
Towards Visually Explaining Variational Autoencoders
Wenqian Liu
Runze Li
Meng Zheng
Srikrishna Karanam
Ziyan Wu
B. Bhanu
Richard J. Radke
Mario Sznaier
80
216
0
18 Nov 2019
Uninformed Students: Student-Teacher Anomaly Detection with
  Discriminative Latent Embeddings
Uninformed Students: Student-Teacher Anomaly Detection with Discriminative Latent Embeddings
Paul Bergmann
Michael Fauser
David Sattlegger
C. Steger
55
660
0
06 Nov 2019
OCGAN: One-class Novelty Detection Using GANs with Constrained Latent
  Representations
OCGAN: One-class Novelty Detection Using GANs with Constrained Latent Representations
Pramuditha Perera
Ramesh Nallapati
Bing Xiang
104
523
0
20 Mar 2019
Skip-GANomaly: Skip Connected and Adversarially Trained Encoder-Decoder
  Anomaly Detection
Skip-GANomaly: Skip Connected and Adversarially Trained Encoder-Decoder Anomaly Detection
S. Akçay
Amir Atapour-Abarghouei
T. Breckon
UQCV
68
375
0
25 Jan 2019
1