ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.03664
  4. Cited By
A New Robust Partial $p$-Wasserstein-Based Metric for Comparing
  Distributions

A New Robust Partial ppp-Wasserstein-Based Metric for Comparing Distributions

6 May 2024
S. Raghvendra
Pouyan Shirzadian
Kaiyi Zhang
ArXivPDFHTML

Papers citing "A New Robust Partial $p$-Wasserstein-Based Metric for Comparing Distributions"

3 / 3 papers shown
Title
Metric properties of partial and robust Gromov-Wasserstein distances
Metric properties of partial and robust Gromov-Wasserstein distances
Jannatul Chhoa
Michael Ivanitskiy
Fushuai Jiang
Shiying Li
Daniel McBride
Tom Needham
Kaiying O'Hare
31
0
0
04 Nov 2024
Semi-relaxed Gromov-Wasserstein divergence with applications on graphs
Semi-relaxed Gromov-Wasserstein divergence with applications on graphs
Cédric Vincent-Cuaz
Rémi Flamary
Marco Corneli
Titouan Vayer
Nicolas Courty
OT
35
23
0
06 Oct 2021
Improving neural networks by preventing co-adaptation of feature
  detectors
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
266
7,634
0
03 Jul 2012
1