ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.03248
  4. Cited By
Communication-Efficient Federated Learning with Adaptive Compression
  under Dynamic Bandwidth

Communication-Efficient Federated Learning with Adaptive Compression under Dynamic Bandwidth

6 May 2024
Zhuansun Ying
Dandan Li
Xiaohong Huang
Caijun Sun
    FedML
ArXivPDFHTML

Papers citing "Communication-Efficient Federated Learning with Adaptive Compression under Dynamic Bandwidth"

11 / 11 papers shown
Title
FedDUAP: Federated Learning with Dynamic Update and Adaptive Pruning
  Using Shared Data on the Server
FedDUAP: Federated Learning with Dynamic Update and Adaptive Pruning Using Shared Data on the Server
Hong Zhang
Ji Liu
Juncheng Jia
Yang Zhou
H. Dai
Dejing Dou
FedML
27
45
0
25 Apr 2022
Adaptive Quantization of Model Updates for Communication-Efficient
  Federated Learning
Adaptive Quantization of Model Updates for Communication-Efficient Federated Learning
Divyansh Jhunjhunwala
Advait Gadhikar
Gauri Joshi
Yonina C. Eldar
FedML
MQ
28
108
0
08 Feb 2021
Client Selection and Bandwidth Allocation in Wireless Federated Learning
  Networks: A Long-Term Perspective
Client Selection and Bandwidth Allocation in Wireless Federated Learning Networks: A Long-Term Perspective
Jie Xu
Heqiang Wang
34
350
0
09 Apr 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
181
42,038
0
03 Dec 2019
Enhancing the Privacy of Federated Learning with Sketching
Enhancing the Privacy of Federated Learning with Sketching
Zaoxing Liu
Tian Li
Virginia Smith
Vyas Sekar
FedML
36
20
0
05 Nov 2019
Model Pruning Enables Efficient Federated Learning on Edge Devices
Model Pruning Enables Efficient Federated Learning on Edge Devices
Yuang Jiang
Shiqiang Wang
Victor Valls
Bongjun Ko
Wei-Han Lee
Kin K. Leung
Leandros Tassiulas
47
454
0
26 Sep 2019
Robust and Communication-Efficient Federated Learning from Non-IID Data
Robust and Communication-Efficient Federated Learning from Non-IID Data
Felix Sattler
Simon Wiedemann
K. Müller
Wojciech Samek
FedML
41
1,343
0
07 Mar 2019
LEAF: A Benchmark for Federated Settings
LEAF: A Benchmark for Federated Settings
S. Caldas
Sai Meher Karthik Duddu
Peter Wu
Tian Li
Jakub Konecný
H. B. McMahan
Virginia Smith
Ameet Talwalkar
FedML
91
1,410
0
03 Dec 2018
Deep Gradient Compression: Reducing the Communication Bandwidth for
  Distributed Training
Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training
Chengyue Wu
Song Han
Huizi Mao
Yu Wang
W. Dally
102
1,394
0
05 Dec 2017
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning
  Algorithms
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
116
8,807
0
25 Aug 2017
Federated Learning: Strategies for Improving Communication Efficiency
Federated Learning: Strategies for Improving Communication Efficiency
Jakub Konecný
H. B. McMahan
Felix X. Yu
Peter Richtárik
A. Suresh
Dave Bacon
FedML
267
4,620
0
18 Oct 2016
1