Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2405.03060
Cited By
Tree-based Ensemble Learning for Out-of-distribution Detection
5 May 2024
Zhaiming Shen
Menglun Wang
Guang Cheng
Ming-Jun Lai
Lin Mu
Ruihao Huang
Qi Liu
Hao Zhu
OODD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Tree-based Ensemble Learning for Out-of-distribution Detection"
14 / 14 papers shown
Title
PnPOOD : Out-Of-Distribution Detection for Text Classification via Plug andPlay Data Augmentation
Mrinal Rawat
R. Hebbalaguppe
Lovekesh Vig
OODD
52
10
0
31 Oct 2021
Energy-based Out-of-distribution Detection
Weitang Liu
Xiaoyun Wang
John Douglas Owens
Yixuan Li
OODD
271
1,354
0
08 Oct 2020
Generalized ODIN: Detecting Out-of-distribution Image without Learning from Out-of-distribution Data
Yen-Chang Hsu
Yilin Shen
Hongxia Jin
Z. Kira
OODD
93
572
0
26 Feb 2020
Your Classifier is Secretly an Energy Based Model and You Should Treat it Like One
Will Grathwohl
Kuan-Chieh Wang
J. Jacobsen
David Duvenaud
Mohammad Norouzi
Kevin Swersky
VLM
78
542
0
06 Dec 2019
Input complexity and out-of-distribution detection with likelihood-based generative models
Joan Serrà
David Álvarez
Vicencc Gómez
Olga Slizovskaia
José F. Núñez
Jordi Luque
OODD
144
276
0
25 Sep 2019
Likelihood Ratios for Out-of-Distribution Detection
Jie Jessie Ren
Peter J. Liu
Emily Fertig
Jasper Snoek
Ryan Poplin
M. DePristo
Joshua V. Dillon
Balaji Lakshminarayanan
OODD
182
721
0
07 Jun 2019
Cold Case: The Lost MNIST Digits
Chhavi Yadav
Léon Bottou
44
105
0
25 May 2019
Deep Anomaly Detection with Outlier Exposure
Dan Hendrycks
Mantas Mazeika
Thomas G. Dietterich
OODD
181
1,476
0
11 Dec 2018
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
268
8,876
0
25 Aug 2017
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods
Nicholas Carlini
D. Wagner
AAML
118
1,857
0
20 May 2017
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
524
5,897
0
08 Jul 2016
DeepFool: a simple and accurate method to fool deep neural networks
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
146
4,895
0
14 Nov 2015
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
264
19,045
0
20 Dec 2014
Describing Textures in the Wild
Mircea Cimpoi
Subhransu Maji
Iasonas Kokkinos
S. Mohamed
Andrea Vedaldi
3DV
116
2,669
0
14 Nov 2013
1