ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.01731
  4. Cited By
Dynamic Anisotropic Smoothing for Noisy Derivative-Free Optimization

Dynamic Anisotropic Smoothing for Noisy Derivative-Free Optimization

2 May 2024
S. Reifenstein
T. Leleu
Yoshihisa Yamamoto
ArXivPDFHTML

Papers citing "Dynamic Anisotropic Smoothing for Noisy Derivative-Free Optimization"

17 / 17 papers shown
Title
Symbolic Discovery of Optimization Algorithms
Symbolic Discovery of Optimization Algorithms
Xiangning Chen
Chen Liang
Da Huang
Esteban Real
Kaiyuan Wang
...
Xuanyi Dong
Thang Luong
Cho-Jui Hsieh
Yifeng Lu
Quoc V. Le
147
374
0
13 Feb 2023
ADAHESSIAN: An Adaptive Second Order Optimizer for Machine Learning
ADAHESSIAN: An Adaptive Second Order Optimizer for Machine Learning
Z. Yao
A. Gholami
Sheng Shen
Mustafa Mustafa
Kurt Keutzer
Michael W. Mahoney
ODL
102
281
0
01 Jun 2020
PyHessian: Neural Networks Through the Lens of the Hessian
PyHessian: Neural Networks Through the Lens of the Hessian
Z. Yao
A. Gholami
Kurt Keutzer
Michael W. Mahoney
ODL
55
303
0
16 Dec 2019
Optuna: A Next-generation Hyperparameter Optimization Framework
Optuna: A Next-generation Hyperparameter Optimization Framework
Takuya Akiba
Shotaro Sano
Toshihiko Yanase
Takeru Ohta
Masanori Koyama
663
5,808
0
25 Jul 2019
A Tutorial on Bayesian Optimization
A Tutorial on Bayesian Optimization
P. Frazier
GP
109
1,788
0
08 Jul 2018
BOHB: Robust and Efficient Hyperparameter Optimization at Scale
BOHB: Robust and Efficient Hyperparameter Optimization at Scale
Stefan Falkner
Aaron Klein
Frank Hutter
BDL
203
1,098
0
04 Jul 2018
Zeroth-Order Stochastic Variance Reduction for Nonconvex Optimization
Zeroth-Order Stochastic Variance Reduction for Nonconvex Optimization
Sijia Liu
B. Kailkhura
Pin-Yu Chen
Pai-Shun Ting
Shiyu Chang
Lisa Amini
92
183
0
25 May 2018
Practical Gauss-Newton Optimisation for Deep Learning
Practical Gauss-Newton Optimisation for Deep Learning
Aleksandar Botev
H. Ritter
David Barber
ODL
56
231
0
12 Jun 2017
Evolution Strategies as a Scalable Alternative to Reinforcement Learning
Evolution Strategies as a Scalable Alternative to Reinforcement Learning
Tim Salimans
Jonathan Ho
Xi Chen
Szymon Sidor
Ilya Sutskever
92
1,538
0
10 Mar 2017
Eigenvalues of the Hessian in Deep Learning: Singularity and Beyond
Eigenvalues of the Hessian in Deep Learning: Singularity and Beyond
Levent Sagun
Léon Bottou
Yann LeCun
UQCV
91
236
0
22 Nov 2016
An Optimal Algorithm for Bandit and Zero-Order Convex Optimization with
  Two-Point Feedback
An Optimal Algorithm for Bandit and Zero-Order Convex Optimization with Two-Point Feedback
Ohad Shamir
59
261
0
31 Jul 2015
ParamILS: An Automatic Algorithm Configuration Framework
ParamILS: An Automatic Algorithm Configuration Framework
Frank Hutter
Thomas Stuetzle
Kevin Leyton-Brown
T. Stützle
86
1,067
0
15 Jan 2014
Optimal rates for zero-order convex optimization: the power of two
  function evaluations
Optimal rates for zero-order convex optimization: the power of two function evaluations
John C. Duchi
Michael I. Jordan
Martin J. Wainwright
Andre Wibisono
77
486
0
07 Dec 2013
Query Complexity of Derivative-Free Optimization
Query Complexity of Derivative-Free Optimization
Kevin Jamieson
Robert D. Nowak
Benjamin Recht
167
159
0
11 Sep 2012
Optimization hardness as transient chaos in an analog approach to
  constraint satisfaction
Optimization hardness as transient chaos in an analog approach to constraint satisfaction
M. Ercsey-Ravasz
Z. Toroczkai
59
113
0
02 Aug 2012
Practical Bayesian Optimization of Machine Learning Algorithms
Practical Bayesian Optimization of Machine Learning Algorithms
Jasper Snoek
Hugo Larochelle
Ryan P. Adams
356
7,942
0
13 Jun 2012
No More Pesky Learning Rates
No More Pesky Learning Rates
Tom Schaul
Sixin Zhang
Yann LeCun
137
478
0
06 Jun 2012
1