ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2405.01113
  4. Cited By
Domain-Transferred Synthetic Data Generation for Improving Monocular
  Depth Estimation

Domain-Transferred Synthetic Data Generation for Improving Monocular Depth Estimation

2 May 2024
Seungyeop Lee
Knut Peterson
Solmaz Arezoomandan
Bill Cai
Peihan Li
Lifeng Zhou
David Han
    MDE
ArXivPDFHTML

Papers citing "Domain-Transferred Synthetic Data Generation for Improving Monocular Depth Estimation"

4 / 4 papers shown
Title
Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data
Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data
Lihe Yang
Bingyi Kang
Zilong Huang
Xiaogang Xu
Jiashi Feng
Hengshuang Zhao
VLM
158
713
0
19 Jan 2024
Unleashing Text-to-Image Diffusion Models for Visual Perception
Unleashing Text-to-Image Diffusion Models for Visual Perception
Wenliang Zhao
Yongming Rao
Zuyan Liu
Benlin Liu
Jie Zhou
Jiwen Lu
ObjD
VLM
MDE
163
217
0
03 Mar 2023
Emerging Properties in Self-Supervised Vision Transformers
Emerging Properties in Self-Supervised Vision Transformers
Mathilde Caron
Hugo Touvron
Ishan Misra
Hervé Jégou
Julien Mairal
Piotr Bojanowski
Armand Joulin
368
5,811
0
29 Apr 2021
Image-to-Image Translation with Conditional Adversarial Networks
Image-to-Image Translation with Conditional Adversarial Networks
Phillip Isola
Jun-Yan Zhu
Tinghui Zhou
Alexei A. Efros
SSeg
212
19,455
0
21 Nov 2016
1