21
0

Plan of Thoughts: Heuristic-Guided Problem Solving with Large Language Models

Abstract

While language models (LMs) offer significant capability in zero-shot reasoning tasks across a wide range of domains, they do not perform satisfactorily in problems which requires multi-step reasoning. Previous approaches to mitigate this involves breaking a larger, multi-step task into sub-tasks and asking the language model to generate proposals ("thoughts") for each sub-task and using exhaustive planning approaches such as DFS to compose a solution. In this work, we leverage this idea to introduce two new contributions: first, we formalize a planning-based approach to perform multi-step problem solving with LMs via Partially Observable Markov Decision Processes (POMDPs), with the LM's own reflections about the value of a state used as a search heuristic; second, leveraging the online POMDP solver POMCP, we demonstrate a superior success rate of 89.4% on the Game of 24 task as compared to existing approaches while also offering better anytime performance characteristics than fixed tree-search which is used previously. Taken together, these contributions allow modern LMs to decompose and solve larger-scale reasoning tasks more effectively.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.