Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2404.17789
Cited By
BiLO: Bilevel Local Operator Learning for PDE inverse problems
27 April 2024
Ray Zirui Zhang
Xiaohui Xie
John S. Lowengrub
Re-assign community
ArXiv
PDF
HTML
Papers citing
"BiLO: Bilevel Local Operator Learning for PDE inverse problems"
36 / 36 papers shown
Title
PirateNets: Physics-informed Deep Learning with Residual Adaptive Networks
Sizhuang He
Bowen Li
Yuhan Chen
P. Perdikaris
AI4CE
PINN
97
32
0
01 Feb 2024
Personalized Predictions of Glioblastoma Infiltration: Mathematical Models, Physics-Informed Neural Networks and Multimodal Scans
Ray Zirui Zhang
Ivan Ezhov
Michal Balcerak
Andy Zhu
Benedikt Wiestler
Bjoern Menze
John S. Lowengrub
AI4CE
74
6
0
28 Nov 2023
Correcting model misspecification in physics-informed neural networks (PINNs)
Zongren Zou
Xuhui Meng
George Karniadakis
PINN
57
42
0
16 Oct 2023
An Expert's Guide to Training Physics-informed Neural Networks
Sizhuang He
Shyam Sankaran
Hanwen Wang
P. Perdikaris
PINN
53
106
0
16 Aug 2023
Discovering a reaction-diffusion model for Alzheimer's disease by combining PINNs with symbolic regression
Zhen Zhang
Zongren Zou
E. Kuhl
George Karniadakis
48
43
0
16 Jul 2023
PPDONet: Deep Operator Networks for Fast Prediction of Steady-State Solutions in Disk-Planet Systems
S. Mao
R. Dong
Lu Lu
K. M. Yi
Sizhuang He
P. Perdikaris
43
16
0
18 May 2023
In-Context Operator Learning with Data Prompts for Differential Equation Problems
Liu Yang
Siting Liu
Tingwei Meng
Stanley J. Osher
84
63
0
17 Apr 2023
Machine Learning for Partial Differential Equations
Steven L. Brunton
J. Nathan Kutz
AI4CE
62
20
0
30 Mar 2023
Physics-informed neural networks for solving forward and inverse problems in complex beam systems
Taniya Kapoor
Hongrui Wang
A. Núñez
R. Dollevoet
AI4CE
PINN
42
46
0
02 Mar 2023
Neural Inverse Operators for Solving PDE Inverse Problems
Roberto Molinaro
Yunan Yang
Bjorn Engquist
Siddhartha Mishra
AI4CE
42
38
0
26 Jan 2023
Deep Learning Methods for Partial Differential Equations and Related Parameter Identification Problems
Derick Nganyu Tanyu
Jianfeng Ning
Tom Freudenberg
Nick Heilenkötter
A. Rademacher
U. Iben
Peter Maass
AI4CE
51
34
0
06 Dec 2022
Semi-supervised Invertible Neural Operators for Bayesian Inverse Problems
Sebastian Kaltenbach
P. Perdikaris
P. Koutsourelakis
52
24
0
06 Sep 2022
A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks
Chen-Chun Wu
Min Zhu
Qinyan Tan
Yadhu Kartha
Lu Lu
65
372
0
21 Jul 2022
Derivative-Informed Neural Operator: An Efficient Framework for High-Dimensional Parametric Derivative Learning
Thomas O'Leary-Roseberry
Peng Chen
Umberto Villa
Omar Ghattas
AI4CE
48
40
0
21 Jun 2022
Critical Investigation of Failure Modes in Physics-informed Neural Networks
S. Basir
Inanc Senocak
PINN
AI4CE
55
20
0
20 Jun 2022
Multifidelity deep neural operators for efficient learning of partial differential equations with application to fast inverse design of nanoscale heat transport
Lu Lu
R. Pestourie
Steven G. Johnson
Giuseppe Romano
AI4CE
47
107
0
14 Apr 2022
FourCastNet: A Global Data-driven High-resolution Weather Model using Adaptive Fourier Neural Operators
Jaideep Pathak
Shashank Subramanian
P. Harrington
S. Raja
Ashesh Chattopadhyay
...
Zong-Yi Li
Kamyar Azizzadenesheli
Pedram Hassanzadeh
K. Kashinath
Anima Anandkumar
AI4Cl
208
682
0
22 Feb 2022
Learn-Morph-Infer: a new way of solving the inverse problem for brain tumor modeling
Ivan Ezhov
Kevin Scibilia
Katharina Franitza
Felix Steinbauer
Suprosanna Shit
...
Diana Waldmannstetter
Martin J. Menten
M. Metz
Benedikt Wiestler
Bjoern Menze
69
27
0
07 Nov 2021
Physics-Informed Neural Operator for Learning Partial Differential Equations
Zong-Yi Li
Hongkai Zheng
Nikola B. Kovachki
David Jin
Haoxuan Chen
Burigede Liu
Kamyar Azizzadenesheli
Anima Anandkumar
AI4CE
92
406
0
06 Nov 2021
Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems
Jeremy Yu
Lu Lu
Xuhui Meng
George Karniadakis
PINN
AI4CE
61
462
0
01 Nov 2021
Physics and Equality Constrained Artificial Neural Networks: Application to Forward and Inverse Problems with Multi-fidelity Data Fusion
S. Basir
Inanc Senocak
PINN
AI4CE
71
70
0
30 Sep 2021
Characterizing possible failure modes in physics-informed neural networks
Aditi S. Krishnapriyan
A. Gholami
Shandian Zhe
Robert M. Kirby
Michael W. Mahoney
PINN
AI4CE
102
633
0
02 Sep 2021
Neural Operator: Learning Maps Between Function Spaces
Nikola B. Kovachki
Zong-Yi Li
Burigede Liu
Kamyar Azizzadenesheli
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
99
446
0
19 Aug 2021
Seismic wave propagation and inversion with Neural Operators
Yan Yang
Angela F. Gao
J. Castellanos
Zachary E. Ross
Kamyar Azizzadenesheli
R. Clayton
39
72
0
11 Aug 2021
Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations
Benjamin Moseley
Andrew Markham
T. Nissen‐Meyer
PINN
71
221
0
16 Jul 2021
Inverse-Dirichlet Weighting Enables Reliable Training of Physics Informed Neural Networks
Suryanarayana Maddu
D. Sturm
Christian L. Müller
I. Sbalzarini
AI4CE
61
83
0
02 Jul 2021
Efficient training of physics-informed neural networks via importance sampling
M. A. Nabian
R. J. Gladstone
Hadi Meidani
DiffM
PINN
107
230
0
26 Apr 2021
Exact imposition of boundary conditions with distance functions in physics-informed deep neural networks
N. Sukumar
Ankit Srivastava
PINN
AI4CE
111
252
0
17 Apr 2021
Learning the solution operator of parametric partial differential equations with physics-informed DeepOnets
Sizhuang He
Hanwen Wang
P. Perdikaris
AI4CE
77
695
0
19 Mar 2021
Physics-informed neural networks with hard constraints for inverse design
Lu Lu
R. Pestourie
Wenjie Yao
Zhicheng Wang
F. Verdugo
Steven G. Johnson
PINN
89
515
0
09 Feb 2021
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
470
2,384
0
18 Oct 2020
Self-Adaptive Physics-Informed Neural Networks using a Soft Attention Mechanism
L. McClenny
U. Braga-Neto
PINN
72
458
0
07 Sep 2020
A Method for Representing Periodic Functions and Enforcing Exactly Periodic Boundary Conditions with Deep Neural Networks
S. Dong
Naxian Ni
76
136
0
15 Jul 2020
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
231
779
0
13 Mar 2020
DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators
Lu Lu
Pengzhan Jin
George Karniadakis
214
2,108
0
08 Oct 2019
DeepXDE: A deep learning library for solving differential equations
Lu Lu
Xuhui Meng
Zhiping Mao
George Karniadakis
PINN
AI4CE
95
1,521
0
10 Jul 2019
1