ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.16653
29
0

Análise de ambiguidade linguística em modelos de linguagem de grande escala (LLMs)

25 April 2024
Lavínia de Carvalho Moraes
Irene Cristina Silvério
Rafael Alexandre Sousa Marques
Bianca de Castro Anaia
Dandara Freitas de Paula
Maria Carolina Schincariol de Faria
Iury Cleveston
Alana de Santana Correia
Raquel Meister Ko. Freitag
    UQLM
ArXiv (abs)PDFHTML
Abstract

Linguistic ambiguity continues to represent a significant challenge for natural language processing (NLP) systems, notwithstanding the advancements in architectures such as Transformers and BERT. Inspired by the recent success of instructional models like ChatGPT and Gemini (In 2023, the artificial intelligence was called Bard.), this study aims to analyze and discuss linguistic ambiguity within these models, focusing on three types prevalent in Brazilian Portuguese: semantic, syntactic, and lexical ambiguity. We create a corpus comprising 120 sentences, both ambiguous and unambiguous, for classification, explanation, and disambiguation. The models capability to generate ambiguous sentences was also explored by soliciting sets of sentences for each type of ambiguity. The results underwent qualitative analysis, drawing on recognized linguistic references, and quantitative assessment based on the accuracy of the responses obtained. It was evidenced that even the most sophisticated models, such as ChatGPT and Gemini, exhibit errors and deficiencies in their responses, with explanations often providing inconsistent. Furthermore, the accuracy peaked at 49.58 percent, indicating the need for descriptive studies for supervised learning.

View on arXiv
Comments on this paper