Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2404.15625
Cited By
Optimizing OOD Detection in Molecular Graphs: A Novel Approach with Diffusion Models
24 April 2024
Xu Shen
Yili Wang
Kaixiong Zhou
Shirui Pan
Xin Wang
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Optimizing OOD Detection in Molecular Graphs: A Novel Approach with Diffusion Models"
21 / 21 papers shown
Title
SpectralGap: Graph-Level Out-of-Distribution Detection via Laplacian Eigenvalue Gaps
Jiawei Gu
Ziyue Qiao
Zechao Li
116
0
0
21 May 2025
GOLD: Graph Out-of-Distribution Detection via Implicit Adversarial Latent Generation
Danny Wang
Ruihong Qiu
Guangdong Bai
Zi Huang
323
2
0
09 Feb 2025
Mamba-Based Graph Convolutional Networks: Tackling Over-smoothing with Selective State Space
Xin He
Yansen Wang
Wenqi Fan
Xu Shen
Xin Juan
Rui Miao
Xin Wang
142
1
0
26 Jan 2025
Unifying Unsupervised Graph-Level Anomaly Detection and Out-of-Distribution Detection: A Benchmark
Yili Wang
Yixin Liu
Xu Shen
Chenyu Li
Kaize Ding
Rui Miao
Ying Wang
Shirui Pan
Xin Wang
104
10
0
21 Jun 2024
DiffGuard: Semantic Mismatch-Guided Out-of-Distribution Detection using Pre-trained Diffusion Models
Ruiyuan Gao
Chenchen Zhao
Lanqing Hong
Q. Xu
69
18
0
15 Aug 2023
Efficient and Degree-Guided Graph Generation via Discrete Diffusion Modeling
Xiaohui Chen
Jiaxing He
Xuhong Han
Liping Liu
DiffM
59
53
0
06 May 2023
GOOD: A Graph Out-of-Distribution Benchmark
Shurui Gui
Xiner Li
Limei Wang
Shuiwang Ji
OOD
73
121
0
16 Jun 2022
How Powerful are K-hop Message Passing Graph Neural Networks
Jiarui Feng
Yixin Chen
Fuhai Li
Anindya Sarkar
Muhan Zhang
43
103
0
26 May 2022
Orthogonal Graph Neural Networks
Kai Guo
Kaixiong Zhou
Xia Hu
Yu Li
Yi Chang
Xin Wang
69
34
0
23 Sep 2021
Adaptive Label Smoothing To Regularize Large-Scale Graph Training
Kaixiong Zhou
Ninghao Liu
Fan Yang
Zirui Liu
Rui Chen
Li Li
Soo-Hyun Choi
Xia Hu
AI4CE
44
19
0
30 Aug 2021
Dirichlet Energy Constrained Learning for Deep Graph Neural Networks
Kaixiong Zhou
Xiao Shi Huang
Daochen Zha
Rui Chen
Li Li
Soo-Hyun Choi
Xia Hu
GNN
AI4CE
63
116
0
06 Jul 2021
BernNet: Learning Arbitrary Graph Spectral Filters via Bernstein Approximation
Mingguo He
Zhewei Wei
Zengfeng Huang
Hongteng Xu
108
226
0
21 Jun 2021
MolGrow: A Graph Normalizing Flow for Hierarchical Molecular Generation
Maksim Kuznetsov
Daniil Polykovskiy
52
43
0
03 Feb 2021
Maximum Likelihood Training of Score-Based Diffusion Models
Yang Song
Conor Durkan
Iain Murray
Stefano Ermon
DiffM
141
663
0
22 Jan 2021
Line Graph Neural Networks for Link Prediction
Lei Cai
Jundong Li
Jie Wang
Shuiwang Ji
GNN
198
200
0
20 Oct 2020
Towards Deeper Graph Neural Networks with Differentiable Group Normalization
Kaixiong Zhou
Xiao Huang
Yuening Li
Daochen Zha
Rui Chen
Xia Hu
120
205
0
12 Jun 2020
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
238
7,642
0
01 Oct 2018
Optimal Transport for structured data with application on graphs
Titouan Vayer
Laetitia Chapel
Rémi Flamary
R. Tavenard
Nicolas Courty
OT
63
273
0
23 May 2018
Inductive Representation Learning on Large Graphs
William L. Hamilton
Z. Ying
J. Leskovec
503
15,232
0
07 Jun 2017
Neural Message Passing for Quantum Chemistry
Justin Gilmer
S. Schoenholz
Patrick F. Riley
Oriol Vinyals
George E. Dahl
593
7,443
0
04 Apr 2017
Semi-Supervised Classification with Graph Convolutional Networks
Thomas Kipf
Max Welling
GNN
SSL
617
29,051
0
09 Sep 2016
1