ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.15253
  4. Cited By
GIST: Gibbs self-tuning for locally adaptive Hamiltonian Monte Carlo

GIST: Gibbs self-tuning for locally adaptive Hamiltonian Monte Carlo

23 April 2024
Nawaf Bou-Rabee
Bob Carpenter
Milo Marsden
ArXivPDFHTML

Papers citing "GIST: Gibbs self-tuning for locally adaptive Hamiltonian Monte Carlo"

14 / 14 papers shown
Title
A Langevin sampling algorithm inspired by the Adam optimizer
A Langevin sampling algorithm inspired by the Adam optimizer
Benedict Leimkuhler
René Lohmann
Peter Whalley
112
0
0
26 Apr 2025
AutoStep: Locally adaptive involutive MCMC
AutoStep: Locally adaptive involutive MCMC
Tiange Liu
Nikola Surjanovic
Miguel Biron-Lattes
Alexandre Bouchard-Côté
Trevor Campbell
48
1
0
24 Oct 2024
On the convergence of dynamic implementations of Hamiltonian Monte Carlo
  and No U-Turn Samplers
On the convergence of dynamic implementations of Hamiltonian Monte Carlo and No U-Turn Samplers
Alain Durmus
Samuel Gruffaz
Miika Kailas
E. Saksman
M. Vihola
45
5
0
07 Jul 2023
Randomized Time Riemannian Manifold Hamiltonian Monte Carlo
Randomized Time Riemannian Manifold Hamiltonian Monte Carlo
Peter Whalley
Daniel Paulin
Benedict Leimkuhler
31
4
0
09 Jun 2022
Improved analysis for a proximal algorithm for sampling
Improved analysis for a proximal algorithm for sampling
Yongxin Chen
Sinho Chewi
Adil Salim
Andre Wibisono
90
57
0
13 Feb 2022
Structured Logconcave Sampling with a Restricted Gaussian Oracle
Structured Logconcave Sampling with a Restricted Gaussian Oracle
Y. Lee
Ruoqi Shen
Kevin Tian
50
71
0
07 Oct 2020
Composable Effects for Flexible and Accelerated Probabilistic
  Programming in NumPyro
Composable Effects for Flexible and Accelerated Probabilistic Programming in NumPyro
Du Phan
Neeraj Pradhan
M. Jankowiak
56
358
0
24 Dec 2019
Faster Hamiltonian Monte Carlo by Learning Leapfrog Scale
Faster Hamiltonian Monte Carlo by Learning Leapfrog Scale
Changye Wu
Julien Stoehr
Christian P. Robert
90
16
0
10 Oct 2018
Geometric integrators and the Hamiltonian Monte Carlo method
Geometric integrators and the Hamiltonian Monte Carlo method
Nawaf Bou-Rabee
J. Sanz-Serna
55
98
0
14 Nov 2017
Identifying the Optimal Integration Time in Hamiltonian Monte Carlo
Identifying the Optimal Integration Time in Hamiltonian Monte Carlo
M. Betancourt
34
37
0
02 Jan 2016
Programming with models: writing statistical algorithms for general
  model structures with NIMBLE
Programming with models: writing statistical algorithms for general model structures with NIMBLE
P. de Valpine
Daniel Turek
C. Paciorek
Clifford Anderson-Bergman
D. Lang
Rastislav Bodík
59
850
0
19 May 2015
Comparison of hit-and-run, slice sampling and random walk Metropolis
Comparison of hit-and-run, slice sampling and random walk Metropolis
Daniel Rudolf
Mario Ullrich
49
13
0
04 May 2015
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
290
3,276
0
09 Jun 2012
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian
  Monte Carlo
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
Matthew D. Hoffman
Andrew Gelman
162
4,295
0
18 Nov 2011
1