ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.14349
  4. Cited By
Automatic Discovery of Visual Circuits

Automatic Discovery of Visual Circuits

22 April 2024
Achyuta Rajaram
Neil Chowdhury
Antonio Torralba
Jacob Andreas
Sarah Schwettmann
    GNN
ArXivPDFHTML

Papers citing "Automatic Discovery of Visual Circuits"

12 / 12 papers shown
Title
Decoding Vision Transformers: the Diffusion Steering Lens
Decoding Vision Transformers: the Diffusion Steering Lens
Ryota Takatsuki
Sonia Joseph
Ippei Fujisawa
Ryota Kanai
DiffM
80
0
0
18 Apr 2025
HyperDAS: Towards Automating Mechanistic Interpretability with Hypernetworks
HyperDAS: Towards Automating Mechanistic Interpretability with Hypernetworks
Jiuding Sun
Jing Huang
Sidharth Baskaran
Karel DÓosterlinck
Christopher Potts
Michael Sklar
Atticus Geiger
AI4CE
95
1
0
13 Mar 2025
Natural Language Descriptions of Deep Visual Features
Natural Language Descriptions of Deep Visual Features
Evan Hernandez
Sarah Schwettmann
David Bau
Teona Bagashvili
Antonio Torralba
Jacob Andreas
MILM
288
121
0
26 Jan 2022
Low-Complexity Probing via Finding Subnetworks
Low-Complexity Probing via Finding Subnetworks
Steven Cao
Victor Sanh
Alexander M. Rush
40
53
0
08 Apr 2021
Understanding the Role of Individual Units in a Deep Neural Network
Understanding the Role of Individual Units in a Deep Neural Network
David Bau
Jun-Yan Zhu
Hendrik Strobelt
Àgata Lapedriza
Bolei Zhou
Antonio Torralba
GAN
65
449
0
10 Sep 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
439
42,393
0
03 Dec 2019
Network Dissection: Quantifying Interpretability of Deep Visual
  Representations
Network Dissection: Quantifying Interpretability of Deep Visual Representations
David Bau
Bolei Zhou
A. Khosla
A. Oliva
Antonio Torralba
MILM
FAtt
146
1,513
1
19 Apr 2017
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based
  Localization
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
277
19,981
0
07 Oct 2016
Learning Deep Features for Discriminative Localization
Learning Deep Features for Discriminative Localization
Bolei Zhou
A. Khosla
Àgata Lapedriza
A. Oliva
Antonio Torralba
SSL
SSeg
FAtt
247
9,305
0
14 Dec 2015
Object Detectors Emerge in Deep Scene CNNs
Object Detectors Emerge in Deep Scene CNNs
Bolei Zhou
A. Khosla
Àgata Lapedriza
A. Oliva
Antonio Torralba
ObjD
135
1,283
0
22 Dec 2014
Going Deeper with Convolutions
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
442
43,635
0
17 Sep 2014
Visualizing and Understanding Convolutional Networks
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
587
15,874
0
12 Nov 2013
1