ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.14027
30
7

OccFeat: Self-supervised Occupancy Feature Prediction for Pretraining BEV Segmentation Networks

22 April 2024
Sophia Sirko-Galouchenko
Alexandre Boulch
Spyros Gidaris
Andrei Bursuc
Antonín Vobecký
Patrick Pérez
Renaud Marlet
    3DPC
ArXivPDFHTML
Abstract

We introduce a self-supervised pretraining method, called OccFeat, for camera-only Bird's-Eye-View (BEV) segmentation networks. With OccFeat, we pretrain a BEV network via occupancy prediction and feature distillation tasks. Occupancy prediction provides a 3D geometric understanding of the scene to the model. However, the geometry learned is class-agnostic. Hence, we add semantic information to the model in the 3D space through distillation from a self-supervised pretrained image foundation model. Models pretrained with our method exhibit improved BEV semantic segmentation performance, particularly in low-data scenarios. Moreover, empirical results affirm the efficacy of integrating feature distillation with 3D occupancy prediction in our pretraining approach. Repository: https://github.com/valeoai/Occfeat

View on arXiv
Comments on this paper