Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2404.13131
Cited By
From Model Performance to Claim: How a Change of Focus in Machine Learning Replicability Can Help Bridge the Responsibility Gap
19 April 2024
Tianqi Kou
Re-assign community
ArXiv
PDF
HTML
Papers citing
"From Model Performance to Claim: How a Change of Focus in Machine Learning Replicability Can Help Bridge the Responsibility Gap"
20 / 20 papers shown
Title
WEIRD FAccTs: How Western, Educated, Industrialized, Rich, and Democratic is FAccT?
Ali Akbar Septiandri
Marios Constantinides
Mohammad Tahaei
Daniele Quercia
60
36
0
10 May 2023
Dislocated Accountabilities in the AI Supply Chain: Modularity and Developers' Notions of Responsibility
D. Widder
D. Nafus
52
73
0
20 Sep 2022
The Fallacy of AI Functionality
Inioluwa Deborah Raji
Indra Elizabeth Kumar
Aaron Horowitz
Andrew D. Selbst
56
184
0
20 Jun 2022
The Conflict Between Explainable and Accountable Decision-Making Algorithms
Gabriel Lima
Nina Grgić-Hlavca
Jin Keun Jeong
M. Cha
40
37
0
11 May 2022
Towards a multi-stakeholder value-based assessment framework for algorithmic systems
Mireia Yurrita
Dave Murray-Rust
Agathe Balayn
A. Bozzon
MLAU
55
29
0
09 May 2022
The Road to Explainability is Paved with Bias: Measuring the Fairness of Explanations
Aparna Balagopalan
Haoran Zhang
Kimia Hamidieh
Thomas Hartvigsen
Frank Rudzicz
Marzyeh Ghassemi
64
78
0
06 May 2022
Goodbye Tracking? Impact of iOS App Tracking Transparency and Privacy Labels
Konrad Kollnig
A. Shuba
Max Van Kleek
Reuben Binns
N. Shadbolt
MQ
45
66
0
07 Apr 2022
Data Cards: Purposeful and Transparent Dataset Documentation for Responsible AI
Mahima Pushkarna
Andrew Zaldivar
Oddur Kjartansson
AI4TS
81
212
0
03 Apr 2022
Human Interpretation of Saliency-based Explanation Over Text
Hendrik Schuff
Alon Jacovi
Heike Adel
Yoav Goldberg
Ngoc Thang Vu
MILM
XAI
FAtt
180
40
0
27 Jan 2022
AI and the Everything in the Whole Wide World Benchmark
Inioluwa Deborah Raji
Emily M. Bender
Amandalynne Paullada
Emily L. Denton
A. Hanna
77
305
0
26 Nov 2021
AI Ethics Statements -- Analysis and lessons learnt from NeurIPS Broader Impact Statements
Carolyn Ashurst
Emmie Hine
Paul Sedille
A. Carlier
64
30
0
02 Nov 2021
The Values Encoded in Machine Learning Research
Abeba Birhane
Pratyusha Kalluri
Dallas Card
William Agnew
Ravit Dotan
Michelle Bao
64
285
0
29 Jun 2021
The Fundamental Principles of Reproducibility
Odd Erik Gundersen
52
62
0
19 Nov 2020
Underspecification Presents Challenges for Credibility in Modern Machine Learning
Alexander DÁmour
Katherine A. Heller
D. Moldovan
Ben Adlam
B. Alipanahi
...
Kellie Webster
Steve Yadlowsky
T. Yun
Xiaohua Zhai
D. Sculley
OffRL
109
687
0
06 Nov 2020
From Optimizing Engagement to Measuring Value
S. Milli
Luca Belli
Moritz Hardt
28
47
0
21 Aug 2020
Replication Markets: Results, Lessons, Challenges and Opportunities in AI Replication
Yang Liu
Michael Gordon
Juntao Wang
Michael Bishop
Yiling Chen
T. Pfeiffer
C. Twardy
Domenico Viganola
26
7
0
10 May 2020
On the Apparent Conflict Between Individual and Group Fairness
Reuben Binns
FaML
66
310
0
14 Dec 2019
Measurement and Fairness
Abigail Z. Jacobs
Hanna M. Wallach
78
388
0
11 Dec 2019
A Step Toward Quantifying Independently Reproducible Machine Learning Research
Edward Raff
40
131
0
14 Sep 2019
Machine Learning that Matters
K. Wagstaff
116
313
0
18 Jun 2012
1