ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.10652
  4. Cited By
ViTextVQA: A Large-Scale Visual Question Answering Dataset for Evaluating Vietnamese Text Comprehension in Images

ViTextVQA: A Large-Scale Visual Question Answering Dataset for Evaluating Vietnamese Text Comprehension in Images

16 April 2024
Quan Van Nguyen
Dan Quang Tran
Huy Quang Pham
Thang Kien-Bao Nguyen
Nghia Hieu Nguyen
Kiet Van Nguyen
Ngan Luu-Thuy Nguyen
    CoGe
ArXivPDFHTML

Papers citing "ViTextVQA: A Large-Scale Visual Question Answering Dataset for Evaluating Vietnamese Text Comprehension in Images"

9 / 59 papers shown
Title
Ask, Attend and Answer: Exploring Question-Guided Spatial Attention for
  Visual Question Answering
Ask, Attend and Answer: Exploring Question-Guided Spatial Attention for Visual Question Answering
Huijuan Xu
Kate Saenko
68
763
0
17 Nov 2015
Neural Module Networks
Neural Module Networks
Jacob Andreas
Marcus Rohrbach
Trevor Darrell
Dan Klein
CoGe
134
1,072
0
09 Nov 2015
VQA: Visual Question Answering
VQA: Visual Question Answering
Aishwarya Agrawal
Jiasen Lu
Stanislaw Antol
Margaret Mitchell
C. L. Zitnick
Dhruv Batra
Devi Parikh
CoGe
199
5,470
0
03 May 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.8K
150,039
0
22 Dec 2014
Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
  Modeling
Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling
Junyoung Chung
Çağlar Gülçehre
Kyunghyun Cho
Yoshua Bengio
581
12,704
0
11 Dec 2014
A Multi-World Approach to Question Answering about Real-World Scenes
  based on Uncertain Input
A Multi-World Approach to Question Answering about Real-World Scenes based on Uncertain Input
Mateusz Malinowski
Mario Fritz
194
697
0
01 Oct 2014
Going Deeper with Convolutions
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
457
43,649
0
17 Sep 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
1.6K
100,348
0
04 Sep 2014
Rich feature hierarchies for accurate object detection and semantic
  segmentation
Rich feature hierarchies for accurate object detection and semantic segmentation
Ross B. Girshick
Jeff Donahue
Trevor Darrell
Jitendra Malik
ObjD
289
26,186
0
11 Nov 2013
Previous
12