ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.09475
  4. Cited By
Improving Weakly-Supervised Object Localization Using Adversarial
  Erasing and Pseudo Label

Improving Weakly-Supervised Object Localization Using Adversarial Erasing and Pseudo Label

15 April 2024
Byeongkeun Kang
Sinhae Cha
Yeejin Lee
    WSOL
ArXivPDFHTML

Papers citing "Improving Weakly-Supervised Object Localization Using Adversarial Erasing and Pseudo Label"

3 / 3 papers shown
Title
FDCNet: Feature Drift Compensation Network for Class-Incremental Weakly
  Supervised Object Localization
FDCNet: Feature Drift Compensation Network for Class-Incremental Weakly Supervised Object Localization
Sejin Park
Taehyung Lee
Yeejin Lee
Byeongkeun Kang
WSOL
CLL
34
4
0
17 Sep 2023
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
950
20,561
0
17 Apr 2017
ImageNet Large Scale Visual Recognition Challenge
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
296
39,194
0
01 Sep 2014
1