Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2404.08809
Cited By
Leveraging viscous Hamilton-Jacobi PDEs for uncertainty quantification in scientific machine learning
12 April 2024
Zongren Zou
Tingwei Meng
Paula Chen
Jérome Darbon
George Karniadakis
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Leveraging viscous Hamilton-Jacobi PDEs for uncertainty quantification in scientific machine learning"
8 / 8 papers shown
Title
Learning and discovering multiple solutions using physics-informed neural networks with random initialization and deep ensemble
Zongren Zou
Zhicheng Wang
George Karniadakis
PINN
AI4CE
65
2
0
08 Mar 2025
HJ-sampler: A Bayesian sampler for inverse problems of a stochastic process by leveraging Hamilton-Jacobi PDEs and score-based generative models
Tingwei Meng
Zongren Zou
Jérome Darbon
George Karniadakis
DiffM
37
2
0
15 Sep 2024
Quantification of total uncertainty in the physics-informed reconstruction of CVSim-6 physiology
Mario De Florio
Zongren Zou
Daniele E. Schiavazzi
George Karniadakis
26
3
0
13 Aug 2024
NeuroSEM: A hybrid framework for simulating multiphysics problems by coupling PINNs and spectral elements
K. Shukla
Zongren Zou
Chi Hin Chan
Additi Pandey
Zhicheng Wang
George Karniadakis
PINN
45
7
0
30 Jul 2024
A comprehensive and FAIR comparison between MLP and KAN representations for differential equations and operator networks
K. Shukla
Juan Diego Toscano
Zhicheng Wang
Zongren Zou
George Karniadakis
26
74
0
05 Jun 2024
Large scale scattering using fast solvers based on neural operators
Zongren Zou
Adar Kahana
Enrui Zhang
Eli Turkel
Rishikesh Ranade
Jay Pathak
George Karniadakis
34
1
0
20 May 2024
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
172
758
0
13 Mar 2020
MCMC using Hamiltonian dynamics
Radford M. Neal
173
3,260
0
09 Jun 2012
1