ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.05270
  4. Cited By
Exploiting Preference Elicitation in Interactive and User-centered
  Algorithmic Recourse: An Initial Exploration

Exploiting Preference Elicitation in Interactive and User-centered Algorithmic Recourse: An Initial Exploration

8 April 2024
Seyedehdelaram Esfahani
Giovanni De Toni
Bruno Lepri
Andrea Passerini
Katya Tentori
Massimo Zancanaro
ArXiv (abs)PDFHTML

Papers citing "Exploiting Preference Elicitation in Interactive and User-centered Algorithmic Recourse: An Initial Exploration"

7 / 7 papers shown
Title
Feature Responsiveness Scores: Model-Agnostic Explanations for Recourse
Feature Responsiveness Scores: Model-Agnostic Explanations for Recourse
Seung Hyun Cheon
Anneke Wernerfelt
Sorelle A. Friedler
Berk Ustun
FaMLFAtt
198
1
0
29 Oct 2024
Synthesizing explainable counterfactual policies for algorithmic
  recourse with program synthesis
Synthesizing explainable counterfactual policies for algorithmic recourse with program synthesis
Giovanni De Toni
Bruno Lepri
Andrea Passerini
CML
62
13
0
18 Jan 2022
Benchmarking and Survey of Explanation Methods for Black Box Models
Benchmarking and Survey of Explanation Methods for Black Box Models
F. Bodria
F. Giannotti
Riccardo Guidotti
Francesca Naretto
D. Pedreschi
S. Rinzivillo
XAI
101
229
0
25 Feb 2021
Counterfactual Explanations and Algorithmic Recourses for Machine
  Learning: A Review
Counterfactual Explanations and Algorithmic Recourses for Machine Learning: A Review
Sahil Verma
Varich Boonsanong
Minh Hoang
Keegan E. Hines
John P. Dickerson
Chirag Shah
CML
130
173
0
20 Oct 2020
In Pursuit of Interpretable, Fair and Accurate Machine Learning for
  Criminal Recidivism Prediction
In Pursuit of Interpretable, Fair and Accurate Machine Learning for Criminal Recidivism Prediction
Caroline Linjun Wang
Bin Han
Bhrij Patel
Cynthia Rudin
FaMLHAI
76
87
0
08 May 2020
ViCE: Visual Counterfactual Explanations for Machine Learning Models
ViCE: Visual Counterfactual Explanations for Machine Learning Models
Oscar Gomez
Steffen Holter
Jun Yuan
E. Bertini
AAML
94
96
0
05 Mar 2020
Counterfactual Explanations without Opening the Black Box: Automated
  Decisions and the GDPR
Counterfactual Explanations without Opening the Black Box: Automated Decisions and the GDPR
Sandra Wachter
Brent Mittelstadt
Chris Russell
MLAU
115
2,360
0
01 Nov 2017
1