ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.01688
  4. Cited By
Supporting Bayesian modelling workflows with iterative filtering for
  multiverse analysis

Supporting Bayesian modelling workflows with iterative filtering for multiverse analysis

2 April 2024
Anna Elisabeth Riha
Nikolas Siccha
Antti Oulasvirta
Aki Vehtari
ArXiv (abs)PDFHTML

Papers citing "Supporting Bayesian modelling workflows with iterative filtering for multiverse analysis"

9 / 9 papers shown
Title
Modeling the Machine Learning Multiverse
Modeling the Machine Learning Multiverse
Samuel J. Bell
Onno P. Kampman
Jesse Dodge
Neil D. Lawrence
68
18
0
13 Jun 2022
Boba: Authoring and Visualizing Multiverse Analyses
Boba: Authoring and Visualizing Multiverse Analyses
Yang Liu
Alex Kale
Tim Althoff
Jeffrey Heer
67
48
0
10 Jul 2020
Using reference models in variable selection
Using reference models in variable selection
Federico Pavone
Juho Piironen
Paul-Christian Bürkner
Aki Vehtari
28
28
0
27 Apr 2020
Rank-normalization, folding, and localization: An improved $\widehat{R}$
  for assessing convergence of MCMC
Rank-normalization, folding, and localization: An improved R^\widehat{R}R for assessing convergence of MCMC
Aki Vehtari
Andrew Gelman
Daniel P. Simpson
Bob Carpenter
Paul-Christian Bürkner
54
940
0
19 Mar 2019
Using stacking to average Bayesian predictive distributions
Using stacking to average Bayesian predictive distributions
Yuling Yao
Aki Vehtari
Daniel P. Simpson
Andrew Gelman
82
340
0
06 Apr 2017
Practical Bayesian model evaluation using leave-one-out cross-validation
  and WAIC
Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC
Aki Vehtari
Andrew Gelman
Jonah Gabry
124
4,060
0
16 Jul 2015
Comparison of Bayesian predictive methods for model selection
Comparison of Bayesian predictive methods for model selection
Juho Piironen
Aki Vehtari
70
279
0
30 Mar 2015
Hilbert Space Methods for Reduced-Rank Gaussian Process Regression
Hilbert Space Methods for Reduced-Rank Gaussian Process Regression
Arno Solin
Simo Särkkä
209
217
0
21 Jan 2014
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian
  Monte Carlo
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
Matthew D. Hoffman
Andrew Gelman
171
4,309
0
18 Nov 2011
1