Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2404.00502
Cited By
Conditional Pseudo-Reversible Normalizing Flow for Surrogate Modeling in Quantifying Uncertainty Propagation
31 March 2024
Minglei Yang
Pengjun Wang
Ming Fan
Dan Lu
Yanzhao Cao
Guannan Zhang
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Conditional Pseudo-Reversible Normalizing Flow for Surrogate Modeling in Quantifying Uncertainty Propagation"
3 / 3 papers shown
Title
A Scalable Real-Time Data Assimilation Framework for Predicting Turbulent Atmosphere Dynamics
Junqi Yin
Siming Liang
Siyan Liu
Feng Bao
H. Chipilski
Dan Lu
Guannan Zhang
AI4Cl
26
2
0
16 Jul 2024
Diffusion Models: A Comprehensive Survey of Methods and Applications
Ling Yang
Zhilong Zhang
Yingxia Shao
Shenda Hong
Runsheng Xu
Yue Zhao
Wentao Zhang
Bin Cui
Ming-Hsuan Yang
DiffM
MedIm
224
1,311
0
02 Sep 2022
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
287
9,145
0
06 Jun 2015
1