ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.00502
  4. Cited By
Conditional Pseudo-Reversible Normalizing Flow for Surrogate Modeling in
  Quantifying Uncertainty Propagation

Conditional Pseudo-Reversible Normalizing Flow for Surrogate Modeling in Quantifying Uncertainty Propagation

31 March 2024
Minglei Yang
Pengjun Wang
Ming Fan
Dan Lu
Yanzhao Cao
Guannan Zhang
    AI4CE
ArXivPDFHTML

Papers citing "Conditional Pseudo-Reversible Normalizing Flow for Surrogate Modeling in Quantifying Uncertainty Propagation"

3 / 3 papers shown
Title
A Scalable Real-Time Data Assimilation Framework for Predicting
  Turbulent Atmosphere Dynamics
A Scalable Real-Time Data Assimilation Framework for Predicting Turbulent Atmosphere Dynamics
Junqi Yin
Siming Liang
Siyan Liu
Feng Bao
H. Chipilski
Dan Lu
Guannan Zhang
AI4Cl
26
2
0
16 Jul 2024
Diffusion Models: A Comprehensive Survey of Methods and Applications
Diffusion Models: A Comprehensive Survey of Methods and Applications
Ling Yang
Zhilong Zhang
Yingxia Shao
Shenda Hong
Runsheng Xu
Yue Zhao
Wentao Zhang
Bin Cui
Ming-Hsuan Yang
DiffM
MedIm
224
1,311
0
02 Sep 2022
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
287
9,145
0
06 Jun 2015
1