ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2404.00340
21
4

Deep Reinforcement Learning in Autonomous Car Path Planning and Control: A Survey

30 March 2024
Yiyang Chen
Chao Ji
Yunrui Cai
Tong Yan
Bo Su
ArXivPDFHTML
Abstract

Combining data-driven applications with control systems plays a key role in recent Autonomous Car research. This thesis offers a structured review of the latest literature on Deep Reinforcement Learning (DRL) within the realm of autonomous vehicle Path Planning and Control. It collects a series of DRL methodologies and algorithms and their applications in the field, focusing notably on their roles in trajectory planning and dynamic control. In this review, we delve into the application outcomes of DRL technologies in this domain. By summarizing these literatures, we highlight potential challenges, aiming to offer insights that might aid researchers engaged in related fields.

View on arXiv
Comments on this paper