Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2403.17673
Cited By
How Private are DP-SGD Implementations?
26 March 2024
Lynn Chua
Badih Ghazi
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
Amer Sinha
Chiyuan Zhang
Re-assign community
ArXiv
PDF
HTML
Papers citing
"How Private are DP-SGD Implementations?"
15 / 15 papers shown
Title
Empirical Privacy Variance
Yuzheng Hu
Fan Wu
Ruicheng Xian
Yuhang Liu
Lydia Zakynthinou
Pritish Kamath
Chiyuan Zhang
David A. Forsyth
64
0
0
16 Mar 2025
Leveraging Randomness in Model and Data Partitioning for Privacy Amplification
Andy Dong
Wei-Ning Chen
Ayfer Özgür
FedML
54
1
0
04 Mar 2025
On the Differential Privacy and Interactivity of Privacy Sandbox Reports
Badih Ghazi
Charlie Harrison
Arpana Hosabettu
Pritish Kamath
Alexander Knop
...
Ethan Leeman
Pasin Manurangsi
Vikas Sahu
Vikas Sahu
Phillipp Schoppmann
94
1
0
22 Dec 2024
Balls-and-Bins Sampling for DP-SGD
Lynn Chua
Badih Ghazi
Charlie Harrison
Ethan Leeman
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
Amer Sinha
Chiyuan Zhang
80
3
0
21 Dec 2024
Fine-Tuning Large Language Models with User-Level Differential Privacy
Zachary Charles
Arun Ganesh
Ryan McKenna
H. B. McMahan
Nicole Mitchell
Krishna Pillutla
Keith Rush
36
11
0
10 Jul 2024
Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning
Lynn Chua
Badih Ghazi
Yangsibo Huang
Pritish Kamath
Ravi Kumar
Daogao Liu
Pasin Manurangsi
Amer Sinha
Chiyuan Zhang
24
11
0
20 Jun 2024
Avoiding Pitfalls for Privacy Accounting of Subsampled Mechanisms under Composition
C. Lebeda
Matthew Regehr
Gautam Kamath
Thomas Steinke
50
9
0
27 May 2024
Private Fine-tuning of Large Language Models with Zeroth-order Optimization
Xinyu Tang
Ashwinee Panda
Milad Nasr
Saeed Mahloujifar
Prateek Mittal
44
18
0
09 Jan 2024
How to DP-fy ML: A Practical Guide to Machine Learning with Differential Privacy
Natalia Ponomareva
Hussein Hazimeh
Alexey Kurakin
Zheng Xu
Carson E. Denison
H. B. McMahan
Sergei Vassilvitskii
Steve Chien
Abhradeep Thakurta
94
167
0
01 Mar 2023
Scalable and Efficient Training of Large Convolutional Neural Networks with Differential Privacy
Zhiqi Bu
J. Mao
Shiyun Xu
131
47
0
21 May 2022
Differentially Private Fine-tuning of Language Models
Da Yu
Saurabh Naik
A. Backurs
Sivakanth Gopi
Huseyin A. Inan
...
Y. Lee
Andre Manoel
Lukas Wutschitz
Sergey Yekhanin
Huishuai Zhang
134
346
0
13 Oct 2021
Opacus: User-Friendly Differential Privacy Library in PyTorch
Ashkan Yousefpour
I. Shilov
Alexandre Sablayrolles
Davide Testuggine
Karthik Prasad
...
Sayan Gosh
Akash Bharadwaj
Jessica Zhao
Graham Cormode
Ilya Mironov
VLM
156
349
0
25 Sep 2021
Practical and Private (Deep) Learning without Sampling or Shuffling
Peter Kairouz
Brendan McMahan
Shuang Song
Om Thakkar
Abhradeep Thakurta
Zheng Xu
FedML
182
154
0
26 Feb 2021
Tempered Sigmoid Activations for Deep Learning with Differential Privacy
Nicolas Papernot
Abhradeep Thakurta
Shuang Song
Steve Chien
Ulfar Erlingsson
AAML
147
178
0
28 Jul 2020
Amplification by Shuffling: From Local to Central Differential Privacy via Anonymity
Ulfar Erlingsson
Vitaly Feldman
Ilya Mironov
A. Raghunathan
Kunal Talwar
Abhradeep Thakurta
144
420
0
29 Nov 2018
1